分析 由A-1=$[\begin{array}{l}{1}&{2}\\{3}&{4}\end{array}]$,求得A-1的行列式丨A-1丨及隨矩陣(A-1)*,即可求得矩陣A,BA=$[\begin{array}{l}{1}&{0}\\{0}&{1}\end{array}]$=E,矩陣A和B互為逆矩陣,B-1=A,即可求得矩陣B-1.
解答 解:A-1=$[\begin{array}{l}{1}&{2}\\{3}&{4}\end{array}]$,
丨A-1丨=1×4-2×3=-2,
A-1的伴隨矩陣(A-1)*=$[\begin{array}{l}{4}&{-2}\\{-3}&{1}\end{array}]$,
∴A=$\frac{1}{丨{A}^{-1}丨}$•(A-1)*=$[\begin{array}{l}{-2}&{1}\\{\frac{3}{2}}&{-\frac{1}{2}}\end{array}]$,
∵BA=$[\begin{array}{l}{1}&{0}\\{0}&{1}\end{array}]$=E,
∴B與A互為逆矩陣,
∴B-1=A,
B-1=$[\begin{array}{l}{-2}&{1}\\{\frac{3}{2}}&{-\frac{1}{2}}\end{array}]$.
點(diǎn)評 本題考查逆變換與逆矩陣,考查矩陣乘法的運(yùn)算,屬于基礎(chǔ)題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com