已知函數(shù),其中m是實數(shù)

(1)若函數(shù)有零點,求m的取值范圍;(7分)

(2)設不等式的解集為A,若,求m的取值范圍。(7分)

 

【答案】

(1)-1≤m≤;(2)m≥.

【解析】本試題主要考查了函數(shù)零點的概念的運用,以及一元二次不等式的求解問題。

解:(1)當m=0時,f(x)=-x,零點為x=0,                     ………………2分

當m¹0時,f(x)為二次函數(shù),由D≥0得(1-m)2-4m2≥0          ………………4分

即3m2+2m-1≤0解得-1≤m≤且m¹0                      ………………6分

綜上所述可知函數(shù)有零點,則-1≤m≤。                   ………………7分

(2)由                     ………………8分

當m=0時,解得x>0,顯然AÍ(-¥,3)不成立,                ……………9分

當m>0時,不等式可化為,解得,若AÍ(-¥,3)則

,即m≥,                                           ……………11分

當m>0時,不等式可化為,解得,顯然AÍ(-¥,3)不成立.                                                         ……………13分

綜上所述,有m≥。                                        ……………14分

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=2lnx-x2(x>0).
(1)求函數(shù)f(x)的單調(diào)區(qū)間與最值;
(2)若方程2xlnx+mx-x3=0在區(qū)間[
1e
,e]
內(nèi)有兩個不相等的實根,求實數(shù)m的取值范圍;  (其中e為自然對數(shù)的底數(shù))
(3)如果函數(shù)g(x)=f(x)-ax的圖象與x軸交于兩點A(x1,0),B(x2,0),且0<x1<x2,求證:g'(px1+qx2)<0(其中,g'(x)是g(x)的導函數(shù),正常數(shù)p,q滿足p+q=1,q>p)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=alnx-x2,x=1是f(x)的一個極值點.
(1)求a的值;
(2)若方程f(x)+m=0在[
1
e
,e]內(nèi)有兩個不等實根,求m的取值范圍(其中e為自然對數(shù)的底數(shù));
(3)令g(x)=f(x)+3x,若g(x)的圖象與x軸交于A(x1,0),B(x2,0)(其中x1<x2),求證:
5
2
<x2-x1
7
2
.(參考數(shù)據(jù):ln2≈0.7  e≈2.7)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•綿陽三模)已知函數(shù)f(x)=2x3-3ax2+a+b(其中a,b為實常數(shù)).
(I)討論函數(shù)的單調(diào)區(qū)間;
(II) 當a>0時,函數(shù)f(x)有三個不同的零點,證明:-a<b<a3-a;
(III) 若f(x)在區(qū)間[1,2]上是減函數(shù),設關于X的方程f(x)=2x3-2ax2+3x+a+b的兩個非零實數(shù)根為x1,x2.試問是否存在實數(shù)m,使得m2+tm+1≤|x1-x2|對任意滿足條件的a及t∈[-1,1]恒成立?若存在,求m的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知 函數(shù)f(x)=的圖像關于原點對稱,其中m,n為實常數(shù)。

求m , n的值;

試用單調(diào)性的定義證明:f (x) 在區(qū)間[-2, 2] 上是單調(diào)函數(shù);

[理科做] 當-2≤x≤2 時,不等式恒成立,求實數(shù)a的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源:2014屆四川省高二“零診”考試文科數(shù)學試卷(解析版) 題型:解答題

已知函數(shù)(其中a,b為實常數(shù))。

(Ⅰ)討論函數(shù)的單調(diào)區(qū)間:

(Ⅱ)當時,函數(shù)有三個不同的零點,證明:

(Ⅲ)若在區(qū)間上是減函數(shù),設關于x的方程的兩個非零實數(shù)根為。試問是否存在實數(shù)m,使得對任意滿足條件的a及t恒成立?若存在,求m的取值范圍;若不存在,請說明理由。

 

查看答案和解析>>

同步練習冊答案