13.若x,y滿足$\left\{\begin{array}{l}{x+y≤4}\\{y-2x+2≤0}\\{y≥0}\end{array}\right.$,若z=x+2y,則z的最大值是( 。
A.1B.4C.6D.8

分析 作出不等式對應(yīng)的平面區(qū)域,利用線性規(guī)劃的知識,通過平移即可求z的最大值.

解答 解:作出不等式組$\left\{\begin{array}{l}{x+y≤4}\\{y-2x+2≤0}\\{y≥0}\end{array}\right.$對應(yīng)的平面區(qū)域如圖(陰影部分);
由z=x+2y得y=-$\frac{1}{2}$x+$\frac{1}{2}$z,
平移直線y=-$\frac{1}{2}$x+$\frac{1}{2}$z,
由圖象可知當(dāng)直線y=-$\frac{1}{2}$x+$\frac{1}{2}$z經(jīng)過點A時,
直線y=-$\frac{1}{2}$x+$\frac{1}{2}$z的截距最大,此時z最大;
由$\left\{\begin{array}{l}{x+y=4}\\{y-2x+2=0}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=2}\\{y=2}\end{array}\right.$,即A(2,2),
代入目標(biāo)函數(shù)z=x+2y得z的最大值是2+2×2=6.
故選:C.

點評 本題主要考查線性規(guī)劃的應(yīng)用問題,利用圖象平行可以求目標(biāo)函數(shù)的最值,數(shù)形結(jié)合法是解線性規(guī)劃問題的基本方法.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.某理財公司有兩種理財產(chǎn)品A和B.這兩種理財產(chǎn)品一年后盈虧的情況如下(每種理財產(chǎn)品的不同投資結(jié)果之間相互獨立):
產(chǎn)品A產(chǎn)品B(其中p、q>0)
投資結(jié)果獲利40%不賠不賺虧損20%
概  率$\frac{1}{3}$$\frac{1}{2}$$\frac{1}{6}$
投資結(jié)果獲利20%不賠不賺虧損10%
概  率p$\frac{1}{3}$
(Ⅰ)已知甲、乙兩人分別選擇了產(chǎn)品A和產(chǎn)品B進行投資,如果一年后他們中至少有一人獲利的概率大于$\frac{3}{5}$,求p的取值范圍;
(Ⅱ)丙要將家中閑置的10萬元錢進行投資,以一年后投資收益的期望值為決策依據(jù),在產(chǎn)品A和產(chǎn)品B之中選其一,應(yīng)選用哪個?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.“m≤-$\frac{1}{2}$”是“?x>0,使得$\frac{x}{2}$+$\frac{1}{2x}$-$\frac{3}{2}$>m是真命題”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知f(x)=sinxcosx+$\sqrt{3}$cos2x-$\frac{\sqrt{3}}{2}$,將f(x)的圖象向右平移$\frac{π}{6}$個單位,再向上平移1個單位,得到y(tǒng)=g(x)的圖象.若對任意實數(shù)x,都有g(shù)(a-x)=g(a+x)成立,則$g(a+\frac{π}{4})$=( 。
A.$1+\frac{{\sqrt{2}}}{2}$B.1C.$1-\frac{{\sqrt{2}}}{2}$D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知集合A={x|2x>1},B={x||x|<3},則A∩B=( 。
A.(-3,0)B.(-3,3)C.(0,3)D.(0,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知函數(shù)f(x)=2cos(ωx+φ)(ω>0)是奇函數(shù),其圖象與直線y=-2的交點間的最小距離是π,則(  )
A.ω=2,φ=$\frac{π}{2}$B.ω=2,φ=πC.ω=$\frac{1}{2}$,φ=$\frac{π}{2}$D.ω=$\frac{1}{2}$,φ=$\frac{π}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.在△ABC中,內(nèi)角A,B,C所對的邊分別為a,b,c,給出下列四個結(jié)論
①若A>B>C,則sinA>sinB>sinC
②等式c=acosB+bcosA一定成立
③$\frac{a}{sinA}=\frac{b+c}{sinB+sinC}$
④若($\frac{\overrightarrow{AB}}{|\overrightarrow{AB}|}$+$\frac{\overrightarrow{AC}}{|\overrightarrow{AC}|}$)•$\overrightarrow{BC}$=0,且$\frac{\overrightarrow{AB}}{|\overrightarrow{AB}|}$•$\frac{\overrightarrow{AC}}{|\overrightarrow{AC}|}$=$\frac{1}{2}$,則△ABC為等邊三角形
以上結(jié)論正確的個數(shù)是( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知△ABC的三個內(nèi)角A,B,C的對應(yīng)邊分別為a,b,c,且${S_{△ABC}}=\frac{{\sqrt{3}}}{12}{a^2}$.則使得sin2B+sin2C=msinBsinC成立的實數(shù)m的最大值是4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知實數(shù) x,y滿足$\left\{\begin{array}{l}x+y≥a\\ x-y≤a\\ y≤a\end{array}\right.({a>0})$,若z=x2+y2的最小值為 2,則 a的值為(  )
A.$\sqrt{2}$B.2C.$2\sqrt{2}$D.4

查看答案和解析>>

同步練習(xí)冊答案