已知點P(m,4)是橢圓
x2
a2
+
y2
b2
=1(a>b>0)上的一點,F(xiàn)1,F(xiàn)2是橢圓的兩個焦點,若△PF1F2的內(nèi)切圓的半徑為
3
2
,則此橢圓的離心率為
 
考點:橢圓的簡單性質(zhì)
專題:計算題,直線與圓,圓錐曲線的定義、性質(zhì)與方程
分析:設|PF1|=m,|PF2|=n,|F1F2|=2c,由橢圓的定義可得m+n=2a,再由三角形的面積公式以及內(nèi)切圓的圓心與三個頂點將三角形△PF1F2分成三個小三角形,分別求面積再求和,得到a,c的方程,由離心率公式計算即可得到.
解答: 解:設|PF1|=m,|PF2|=n,|F1F2|=2c,
由橢圓的定義可得m+n=2a,
由三角形的面積公式可得
S△PF1F2=
1
2
×2c×4=4c,
由△PF1F2的內(nèi)切圓的半徑為
3
2
,
S△PF1F2=
1
2
×
3
2
(m+n+2c)=
3
4
(2a+2c)=
3
2
(a+c),
即有4c=
3
2
(a+c),
即為5c=3a,
則離心率e=
c
a
=
3
5

故答案為:
3
5
點評:本題考查橢圓的定義和性質(zhì),考查三角形的面積公式和面積的分割法,考查離心率的求法,考查運算能力,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

設a∈R,若x≥
1
2
時均有[(a-1)x-1](x2-ax-1)≥0,則a=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設半徑為3的圓C被直線l:x+y-4=0截得的弦AB的中點為P(3,1)且弦長|AB|=2
7
求圓C的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設α1=-570°,α2=750°,β1=
5
β2=-
π
3

(1)將α1,α2用弧度制表示出來并指出它們各自的終邊所在的象限;
(2)將β1,β2用角度制表示出來,并在-720°~0°范圍內(nèi)找出它們終邊相同的所有角.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

三角形ABC的頂點A(-1,2),B(2,5),C(1,7)
(1)與BC平行的中位線所在直線方程;
(2)BC邊上的高所在的直線方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

sinα=3cosα,則tanα=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

對于函數(shù)f(x)(x∈D),若x∈D時,均有f′(x)>f(x)成立,則稱函數(shù)f(x)是J函數(shù).
(Ⅰ)當函數(shù)f(x)=mexlnx是J函數(shù)時,求m的取值范圍;
(Ⅱ)若函數(shù)g(x)為(0,+∞)上的J函數(shù),試比較g(a)與ea-1g(1)的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,已知△ABC內(nèi)接于圓O,點D在OC的延長線上,AD切圓O于A,若∠ABC=30°,AC=2,則AD的長為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知直線y=
1
2
x與拋物線y2=2px(p>0)交于O,A兩點(F為拋物線的焦點,O為坐標原點),若|AF|=17,求OA的垂直平分線的方程.

查看答案和解析>>

同步練習冊答案