設(shè)n∈N
*,且sinx+cosx=-1,則sin
nx+cos
nx=
.
考點(diǎn):同角三角函數(shù)基本關(guān)系的運(yùn)用
專題:三角函數(shù)的求值
分析:將已知等式兩邊平方,利用同角三角函數(shù)間基本關(guān)系化簡,得到sinxcosx=0,即sinx=0或cosx=0,即可確定出所求式子的值.
解答:
解:將已知等式兩邊平方得:(sinx+cosx)2=sin2x+2sinxcosx+cos2x=1+2sinxcosx=1,即sinxcosx=0,
∴sinx=0或cosx=0,
當(dāng)sinx=0時(shí),cosx=-1,此時(shí)sinnx+cosnx=(-1)n;
當(dāng)cosx=0時(shí),sinx=-1,此時(shí)sinnx+cosnx=(-1)n.
故答案為:(-1)n.
點(diǎn)評:此題考查了同角三角函數(shù)基本關(guān)系的運(yùn)用,熟練掌握基本關(guān)系是解本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:
題型:
已知集合A={(x,y)|x2+y2-4x-14y+45<0},B={(x,y)|y>|x-m|+7}.
(1)若A∩B≠∅,求m的取值范圍;
(2)若點(diǎn)Q的坐標(biāo)為(m,7),且Q∈A,集合A,B所表示的兩個平面區(qū)域的邊界交于點(diǎn)M,N,求△QMN的面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
已知實(shí)數(shù)a>0,命題p:?x∈R,|sinx|>a有解; 命題q:?x∈[
,
],sin
2x+asinx-1≥0.
(1)寫出?q;
(2)若p且q為真,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
某人參加一檔綜藝節(jié)目,需依次闖關(guān)回答8道題,若回答正確,就獲得一定的“家庭夢想基金”且可選擇拿著“家庭夢想基金”離開或繼續(xù)答題(假設(shè)離開和繼續(xù)答題的可能性相等);若回答錯誤,則此前積累的基金清零,且他離開此節(jié)目.按規(guī)定,他有一次求助親友團(tuán)的機(jī)會,若回答正確,也被視為答案正確,否則視為錯誤.8道題目隨機(jī)排列,且他能答出其中5題,且另3題中,有2題親友團(tuán)能答對,則他能獲得第5關(guān)對應(yīng)的“家庭夢想基金”的概率為
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
函數(shù)f(x)=2|sinx|+3|cosx|的值域?yàn)?div id="9sp1jy0" class='quizPutTag' contenteditable='true'>
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
在△ABC中,角A、B、C的對邊分別為a、b、c,且cos(A-B)cosB-sin(A-B)sin(A+C)=-
.
(1)求sinA的值.
(2)若a=4
,b=5,求向量
在
方向上的投影.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
已知sinα=
-,α是第四象限的角,則cos
2=
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
已知函數(shù)y=f(x)對于一切實(shí)數(shù)x滿足f(-x)=f(x),并且f(x)=0有三個實(shí)數(shù)根,這三個實(shí)數(shù)根和是
.
查看答案和解析>>