如圖,用4種不同的顏色對(duì)圖中5個(gè)區(qū)域涂色(4種顏色全部使用),要求每個(gè)區(qū)域涂一種顏色,相鄰的區(qū)域不能涂相同的顏色,則不同的涂色種數(shù)有(    )

A.72種 B.96種 C.108種     D.120種

 

【答案】

B

【解析】解:由題意知本題是一個(gè)分步計(jì)數(shù)問(wèn)題,第一步:涂區(qū)域1,有4種方法;第二步:涂區(qū)域2,有3種方法;第三步:涂區(qū)域4,有2種方法(此前三步已經(jīng)用去三種顏色);第四步:涂區(qū)域3,分兩類:第一類,3與1同色,則區(qū)域5涂第四種顏色;第二類,區(qū)域3與1不同色,則涂第四種顏色,此時(shí)區(qū)域5就可以涂區(qū)域1或區(qū)域2或區(qū)域3中的任意一種顏色,有3種方法.所以,不同的涂色種數(shù)有4×3×2×(1×1+1×3)=96種.

故選B.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•遼寧一模)如圖,用4種不同的顏色對(duì)圖中5個(gè)區(qū)域涂色(4種顏色全部使用),要求每個(gè)區(qū)域涂一種顏色,相鄰的區(qū)域不能涂相同的顏色,則不同的涂色種數(shù)有(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:遼寧一模 題型:單選題

如圖,用4種不同的顏色對(duì)圖中5個(gè)區(qū)域涂色(4種顏色全部使用),要求每個(gè)區(qū)域涂一種顏色,相鄰的區(qū)域不能涂相同的顏色,則不同的涂色種數(shù)有(  )
A.72種B.96種C.108種D.120種
精英家教網(wǎng)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011年福建省泉州市石獅市石光華僑聯(lián)合中學(xué)高考數(shù)學(xué)沖刺模擬試卷3(理科)(解析版) 題型:選擇題

如圖,用4種不同的顏色對(duì)圖中5個(gè)區(qū)域涂色(4種顏色全部使用),要求每個(gè)區(qū)域涂一種顏色,相鄰的區(qū)域不能涂相同的顏色,則不同的涂色種數(shù)有( )

A.72種
B.96種
C.108種
D.120種

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010年遼寧省大連市高三雙基測(cè)試數(shù)學(xué)試卷(理科)(解析版) 題型:選擇題

如圖,用4種不同的顏色對(duì)圖中5個(gè)區(qū)域涂色(4種顏色全部使用),要求每個(gè)區(qū)域涂一種顏色,相鄰的區(qū)域不能涂相同的顏色,則不同的涂色種數(shù)有( )

A.72種
B.96種
C.108種
D.120種

查看答案和解析>>

同步練習(xí)冊(cè)答案