A. | 30° | B. | 45° | C. | 60° | D. | 90° |
分析 因?yàn)榍的切線的斜率為曲線在切點(diǎn)處的導(dǎo)數(shù),所以只需求出函數(shù)在P($\frac{1}{2}$,$\frac{5}{4}$)處的導(dǎo)數(shù),即為切線斜率,而直線的斜率就是傾斜角的正切,再根據(jù)斜率求傾斜角即可.
解答 解:y=x2+1的導(dǎo)數(shù)為y′=2x,則曲線y=x2+1在點(diǎn)P($\frac{1}{2}$,$\frac{5}{4}$)處的切線的斜率為1
∴切線的傾斜角為45°
故選B.
點(diǎn)評 本題主要考查函數(shù)的切線斜率與導(dǎo)數(shù)之間的關(guān)系,直線的傾斜角與斜率之間的關(guān)系,屬于綜合題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 在三角形中,若A>B,則sinA>sinB | |
B. | 若等比數(shù)列的前n項(xiàng)和Sn=2n+k,則必有k=-1 | |
C. | A,B為兩個(gè)定點(diǎn),k為非零常數(shù),|$\overrightarrow{PA}|-|\overrightarrow{PB}$|=k,則動(dòng)點(diǎn)P的軌跡為雙曲線 | |
D. | 曲線$\frac{x^2}{16}-\frac{y^2}{9}$=1與曲線$\frac{x^2}{35-λ}+\frac{y^2}{10-λ}$=1(λ<10)有相同的焦點(diǎn) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 165° | B. | 60° | C. | 25° | D. | 15° |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | cosθ<tanθ<sinθ | B. | sinθ<cosθ<tanθ | C. | tanθ<sinθ<cosθ | D. | cosθ<sinθ<tanθ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com