分析 ①根據(jù)三角形的面積公式即可求出等邊△ABC的面積;
②畫出圖形,結(jié)合圖形,表示出$\overrightarrow{DE}$,計(jì)算$\overrightarrow{DE}$•$\overrightarrow{CB}$的值.
解答 解:①邊長(zhǎng)為2的等邊△ABC的面積為
S△ABC=$\frac{1}{2}$•|$\overrightarrow{AB}$|•|$\overrightarrow{AC}$|•sin60°=$\frac{1}{2}$×2×2×$\frac{\sqrt{3}}{2}$=$\sqrt{3}$;
②如圖所示,D為BC的中點(diǎn),點(diǎn)E滿足$\overrightarrow{CE}$=$\frac{1}{3}\overrightarrow{CA}$,
∴$\overrightarrow{DE}$=$\overrightarrow{DC}$+$\overrightarrow{CE}$=$\frac{1}{2}$$\overrightarrow{BC}$+$\frac{1}{3}$$\overrightarrow{CA}$=-$\frac{1}{2}$$\overrightarrow{CB}$+$\frac{1}{3}$$\overrightarrow{CA}$,
∴$\overrightarrow{DE}$•$\overrightarrow{CB}$=(-$\frac{1}{2}$$\overrightarrow{CB}$+$\frac{1}{3}$$\overrightarrow{CA}$)•$\overrightarrow{CB}$
=-$\frac{1}{2}$${\overrightarrow{CB}}^{2}$+$\frac{1}{3}$$\overrightarrow{CA}$•$\overrightarrow{CB}$
=-$\frac{1}{2}$×22+$\frac{1}{3}$×2×2×cos60°
=-$\frac{4}{3}$.
故答案為:$\sqrt{3}$,$-\frac{4}{3}$.
點(diǎn)評(píng) 本題考查了三角形的面積公式與平面向量的數(shù)量積的應(yīng)用問(wèn)題,是基礎(chǔ)題目.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | f(1)<f(2)<f(4) | B. | f(2)<f(1)<f(4) | C. | f(2)<f(4)<f(1) | D. | f(4)<f(2)<f(1) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $6\sqrt{3}$ | B. | $5\sqrt{3}$ | C. | $3\sqrt{3}$ | D. | $\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{3}{2}$ | B. | $\frac{9}{2}$ | C. | $\frac{3}{2}$ | D. | $\frac{7}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | {α|α=2kπ-$\frac{π}{4}$,k∈Z} | B. | {α|α=2kπ+$\frac{π}{4}$,k∈Z} | C. | {α|α=2kπ-$\frac{5π}{4}$,k∈Z} | D. | {α|α=2kπ+$\frac{5π}{4}$,k∈Z} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com