過點P(2,1)作直線l分別交x軸、y軸正半軸于A、B兩點,當△AOB面積最小時,求直線l的方程.

解:設直線l的方程為=1(a>0,b>0).

P(2,1)在直線l上,∴=1.

于是·≤()2,

當且僅當時上式等號成立,

a=4,b=2時,·最大.

SAOB的最小值為ab=4.

此時直線l的方程為=1.

∴當△AOB的面積最小時,直線l的方程為=1,?即x+2y-4=0.

點評:(1)求直線l與坐標軸圍成的三角形的面積的問題時,常把直線l的方程設成截距式=1,這樣三角形的面積就是|ab|.此例中,根據(jù)兩正數(shù)的和是常數(shù)的特點,利用基本不等式,求得了積的最大值,也就是面積的最小值,再由取得最值的條件得出a、b的值,進而求得l的方程.

(2)本題還可設l的方程為y-1=k(x-2)(k<0).

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

如圖梯形ABCD,AD∥BC,∠A=90°,過點C作CE∥AB,AD=2BC,AB=BC,,現(xiàn)將梯形沿CE折成直二面角D-EC-AB.
(1)求直線BD與平面ABCE所成角的正切值;
(2)設線段AB的中點為P,在直線DE上是否存在一點M,使得PM∥面BCD?若存在,請指出點M的位置,并證明你的結論;若不存在,請說明理由;

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•淮南二模)已知橢圓C:
x2
a2
+
y2
b2
=1,(a>b>0)與雙曲4x2-
4
3
y2=1有相同的焦點,且橢C的離心e=
1
2
,又A,B為橢圓的左右頂點,M為橢圓上任一點(異于A,B).
(1)求橢圓的方程;
(2)若直MA交直x=4于點P,過P作直線MB的垂線x軸于點Q,Q的坐標;
(3)求點P在直線MB上射R的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年四川省成都七中高二(上)10月段考數(shù)學試卷(理科)(解析版) 題型:解答題

如圖梯形ABCD,AD∥BC,∠A=90°,過點C作CE∥AB,AD=2BC,AB=BC,,現(xiàn)將梯形沿CE折成直二面角D-EC-AB.
(1)求直線BD與平面ABCE所成角的正切值;
(2)設線段AB的中點為P,在直線DE上是否存在一點M,使得PM∥面BCD?若存在,請指出點M的位置,并證明你的結論;若不存在,請說明理由;

查看答案和解析>>

科目:高中數(shù)學 來源:2012年安徽省淮北市高考數(shù)學二模試卷(文科)(解析版) 題型:解答題

已知橢圓C:+=1,(a>b>0)與雙曲4x2-y2=1有相同的焦點,且橢C的離心e=,又A,B為橢圓的左右頂點,M為橢圓上任一點(異于A,B).
(1)求橢圓的方程;
(2)若直MA交直x=4于點P,過P作直線MB的垂線x軸于點Q,Q的坐標;
(3)求點P在直線MB上射R的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學 來源:2012年安徽省淮南市高考數(shù)學二模試卷(理科)(解析版) 題型:解答題

已知橢圓C:+=1,(a>b>0)與雙曲4x2-y2=1有相同的焦點,且橢C的離心e=,又A,B為橢圓的左右頂點,M為橢圓上任一點(異于A,B).
(1)求橢圓的方程;
(2)若直MA交直x=4于點P,過P作直線MB的垂線x軸于點Q,Q的坐標;
(3)求點P在直線MB上射R的軌跡方程.

查看答案和解析>>

同步練習冊答案