設(shè)函數(shù)

(1)設(shè),證明:在區(qū)間內(nèi)存在唯一的零點(diǎn);

(2)設(shè)為偶數(shù),,,求的最小值和最大值;

(3)設(shè),若對(duì)任意,有,求的取值范圍;

 

【答案】

(1)在區(qū)間內(nèi)存在唯一的零點(diǎn).

(2)(3)

【解析】

試題分析:(1)由,,得 

對(duì)恒成立,從而單調(diào)遞增,

,,

在區(qū)間內(nèi)存在唯一的零點(diǎn).       

(2)因?yàn)?nbsp;

 由線性規(guī)劃

(或,)  

(3)當(dāng)時(shí),

(Ⅰ)當(dāng)時(shí),即,此時(shí)

只需滿足,從而

(Ⅱ)當(dāng)時(shí),即,此時(shí)

只需滿足,即

解得:,從而

(Ⅲ)當(dāng)時(shí),即,此時(shí)

只需滿足,即

解得:,從而

綜上所述:    

考點(diǎn):本題主要考查集合的概念,函數(shù)與方程,導(dǎo)數(shù)研究函數(shù)單調(diào)性的應(yīng)用,指數(shù)函數(shù)性質(zhì),不等式解法。

點(diǎn)評(píng):綜合題,本題綜合性較強(qiáng),難度較大。確定方程只有一個(gè)實(shí)根,通過(guò)構(gòu)造函數(shù),研究其單調(diào)性實(shí)現(xiàn)。由,確定得到,進(jìn)一步得到,求得b的范圍。

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給定k∈N*,設(shè)函數(shù)f:N*→N*滿足:對(duì)于任意大于k的正整數(shù)n:f(n)=n-k
(1)設(shè)k=1,則其中一個(gè)函數(shù)f在n=1處的函數(shù)值為
a(a∈N*
a(a∈N*
;
(2)設(shè)k=5,且當(dāng)n≤5時(shí),1≤f(n)≤2,則不同的函數(shù)f的個(gè)數(shù)為
32
32

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x) 是定義在R上的偶函數(shù),且對(duì)任意的x∈R恒有f(x+1)=-f(x),已知當(dāng)x∈[0,1]時(shí),f(x)=3x.則
①2是f(x)的周期;        
②函數(shù)f(x)的最大值為1,最小值為0;
③函數(shù)f(x)在(2,3)上是增函數(shù);    
④直線x=2是函數(shù)f(x)圖象的一條對(duì)稱(chēng)軸.
其中所有正確命題的序號(hào)是
①③④
①③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)的定義域?yàn)锳,值域?yàn)锽,如果存在函數(shù)x=g(t),使得函數(shù)y=f(g(t))的值域仍然是B,那么稱(chēng)函數(shù)x=g(t)是函數(shù)f(x)的一個(gè)等值域變換.
(1)判斷下列函數(shù)x=g(t)是不是函數(shù)f(x)的一個(gè)等值域變換?說(shuō)明你的理由.
①f(x)=2x+1,x∈R,x=g(t)=t2-2t+3,t∈R;
②f(x)=x2-x+1,x∈R,x=g(t)=2t,t∈R;
(2)設(shè)函數(shù)f(x)=log2(x2-x+1),g(t)=at2+2t+1,若函數(shù)x=g(t)是函數(shù)f(x)的一個(gè)等值域變換,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•普陀區(qū)一模)設(shè)函數(shù)f(x)和x都是定義在集合
2
上的函數(shù),對(duì)于任意的
2
x,都有x成立,稱(chēng)函數(shù)x與y在l上互為“l(fā)函數(shù)”.
(1)函數(shù)f(x)=2x與g(x)=sinx在M上互為“H函數(shù)”,求集合M;
(2)若函數(shù)f(x)=ax(a>0且a≠1)與g(x)=x+1在集合M上互為“x函數(shù)”,求證:a>1;
(3)函數(shù)m與m在集合M={x|x>-1且x≠2k-3,k∈N*}上互為“m函數(shù)”,當(dāng)m時(shí),m,且m在m上是偶函數(shù),求函數(shù)m在集合M上的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)y=1-
2x+1-n
x2+x+1
(n∈N*)的最小值為an,最大值為bn,又Cn=3(an+bn)-9
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求
lim
n→∞
C1+C2+…+Cn
Cn
(n∈N*)的值
(3)設(shè)Sn=
1
C1
+
1
C2
+…+
1
Cn
,dn=S2n+1-Sn
,是否存在最小的整數(shù)m,使對(duì)任意的n∈N*都有dn
m
25
成立?若存在,求出m的值;若不存在請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案