設(shè)變量x,y滿足約束條件
x-y≥1
x+y≤4
y≥1
,則目標(biāo)函數(shù)z=2x+4y的最大值是(  )
A、11B、12C、13D、14
考點(diǎn):簡單線性規(guī)劃
專題:不等式的解法及應(yīng)用
分析:作出不等式組對應(yīng)的平面區(qū)域,利用z的幾何意義,利用數(shù)形結(jié)合即可得到結(jié)論.
解答: 解:作出不等式組對應(yīng)的平面區(qū)域如圖:
由z=2x+4y得y=-
1
2
x+
z
4
,
平移直線y=-
1
2
x+
z
4
,由圖象可知當(dāng)直線y=-
1
2
x+
z
4
經(jīng)過點(diǎn)A時,
直線y=-
1
2
x+
z
4
的截距最大,此時z最大,
x-y=1
x+y=4
,解得
x=
5
2
y=
3
2
,
即A(
5
2
3
2
),
此時z=2×
5
2
+4×
3
2
=5+6=11,
故選:A.
點(diǎn)評:本題主要考查線性規(guī)劃的應(yīng)用,利用z的幾何意義,通過數(shù)形結(jié)合是解決本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)P為函數(shù)f(x)=sinπx的圖象上的一個最高點(diǎn),Q為函數(shù)g(x)=cosπx的圖象上的一個最低點(diǎn),則|PQ|最小值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合M={x|x2-2x≤0},N={x|
3+x
1-x
≤0
},U=R,則圖中陰影部分表示的集合是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知i為虛數(shù)單位,則復(fù)數(shù)
2i
1+i
的共軛復(fù)數(shù)是(  )
A、1+iB、1-i
C、-1+iD、-1-i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列命題中,假命題為( 。
A、?x∈R,x2+x+1>0
B、存在四邊相等的四邊形不是正方形
C、若x,y∈R,且x+y>2,則x,y至少有一個大于1
D、a+b=0的充要條件是
a
b
=-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知變量x,y滿足約束條件
y≤x
2x-y≤8
2x+y≥3
,則目標(biāo)函數(shù)z=6x-2y的最小值為( 。
A、32B、4C、8D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

運(yùn)行如圖所示的程序框圖,則輸出的結(jié)果S為(  )
A、1007B、1008
C、2013D、2014

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2+bx(b∈R),則下列結(jié)論正確的是( 。
A、?b∈R,f(x)在(0,+∞)上是增函數(shù)
B、?b∈R,f(x)在(0,+∞)上是減函數(shù)
C、?b∈R,f(x)為奇函數(shù)
D、?b∈R,f(x)為偶函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C:3x2+y2=12,直線x-y-2=0交橢圓C于A,B兩點(diǎn).
(Ⅰ)求橢圓C的焦點(diǎn)坐標(biāo)及長軸長;
(Ⅱ)求以線段AB為直徑的圓的方程.

查看答案和解析>>

同步練習(xí)冊答案