13.已知f(x)=ax3-3x2+1(a>0),定義h(x)=max{f(x),g(x)}=$\left\{{\begin{array}{l}{f(x),f(x)≥g(x)}\\{g(x),f(x)<g(x)}\end{array}}\right.$
(1)求函數(shù)f(x)的極值;
(2)若g(x)=xf′(x),且存在x∈[1,2]使h(x)=f(x),求實數(shù)a的取值范圍.

分析 (1)求出函數(shù)的導數(shù),解關(guān)于導函數(shù)的方程,求出函數(shù)的單調(diào)區(qū)間,從而求出函數(shù)的極值即可;
(2)問題轉(zhuǎn)化為不等式2a≤$\frac{1}{{x}^{3}}$+$\frac{3}{x}$在x∈[1,2]上有解,根據(jù)函數(shù)的單調(diào)性求出a的范圍即可.

解答 解:(1)∵函數(shù)f(x)=ax3-3x2+1,
∴f'(x)=3ax2-6x=3x(ax-2),
令f'(x)=0,得x1=0或x2=$\frac{2}{a}$,∵a>0,∴x1<x2,
列表如下:

x(-∞,0)0(0,$\frac{2}{a}$)$\frac{2}{a}$($\frac{2}{a}$,+∞)
f'(x)+0-0+
f(x)極大值極小值
∴f(x)的極大值為f(0)=1,極小值為f($\frac{2}{a}$)=$\frac{8}{{a}^{2}}$-$\frac{12}{{a}^{2}}$+1=1-$\frac{4}{{a}^{2}}$;
(2)g(x)=xf'(x)=3ax3-6x2,
∵存在x∈[1,2]使h(x)=f(x),
∴f(x)≥g(x)在x∈[1,2]上有解,
即ax3-3x2+1≥3ax3-6x2在x∈[1,2]上有解,
即不等式2a≤$\frac{1}{{x}^{3}}$+$\frac{3}{x}$在x∈[1,2]上有解,
設(shè)y=$\frac{1}{{x}^{3}}$+$\frac{3}{x}$=$\frac{{3x}^{2}+1}{{x}^{3}}$(x∈[1,2]),
∵y′=$\frac{-{3x}^{2}-3}{{x}^{4}}$<0對x∈[1,2]恒成立,
∴y=$\frac{1}{{x}^{3}}$+$\frac{2}{x}$在x∈[1,2]上單調(diào)遞減,
∴當x=1時,y的最大值為4,
∴2a≤4,即a≤2.

點評 本題考查了函數(shù)的單調(diào)性、極值問題,考查導數(shù)的應(yīng)用以及分類討論思想,轉(zhuǎn)化思想.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

3.已知數(shù)列{an}通項公式${a_n}=\left\{\begin{array}{l}2n-3,\;\;n為奇數(shù)\\{2^{n-1}},\;\;\;\;\;\;n為偶數(shù)\end{array}\right.$,則數(shù)列{an}的前9項和為720.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.等比數(shù)列{an}的各項均為正數(shù),2a5,a4,4a6成等差數(shù)列,且滿足a4=4a32
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)設(shè)bn=$\frac{{a}_{n+1}}{(1-{a}_{n})(1-{a}_{n+1})}$,n∈N*,求數(shù)列{bn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.如圖,四邊形ABCD是平行四邊形,平面AED⊥平面ABCD,EF∥AB,AB=2,BC=EF=1,AE=$\sqrt{6}$,DE=3,∠BAD=60°,G為BC的中點.
(Ⅰ)求證:FG∥平面BED;
(Ⅱ)求證:平面BED⊥平面AED;
(Ⅲ)求直線EF與平面BED所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.已知函數(shù)f(x)=sinx-cosx,把函數(shù)f(x)的圖象上每個點的橫坐標擴大到原來的2倍,再向右平移$\frac{π}{3}$個單位長度,得到函數(shù)g(x)的圖象,則函數(shù)g(x)的對稱軸方程為x=2kπ+$\frac{11π}{6}$,k∈Z.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.函數(shù)y=0.3${\;}^{2-x-{x}^{2}}$的定義域為R;單調(diào)遞增區(qū)間[-$\frac{1}{2}$,+∞);值域[$0.{3}^{\frac{9}{4}}$,+∞).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.已知tanα=$\sqrt{3,}$α∈(0,π),則sinα=$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.已知函數(shù)f(x)=ln(1+x),x∈[0,+∞),f'(x)是f(x)的導函數(shù).設(shè)g(x)=f(x)-axf'(x)(a為常數(shù)),求函數(shù)g(x)在[0,+∞)上的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.若關(guān)于x,y的二元一次方程組$\left\{\begin{array}{l}ax+y=a+1\\ x+ay=2a\end{array}\right.$無解,則a=-1.

查看答案和解析>>

同步練習冊答案