分析 (1)已知等式利用正弦定理化簡,整理后即可確定出A的度數(shù);
(2)利用余弦定理列出關(guān)系式,把a(bǔ)與cosA的值代入并利用基本不等式求出b+c的范圍,再利用三角形三邊關(guān)系即可確定出滿足題意b的范圍.
解答 解:(1)∵將ccosB+bcosC=2acosA,利用正弦定理化簡得:sinBcosC+sinCcosB=2sinAcos(A-$\frac{π}{3}$),
∴sin(B+C)=sinA=2sinAcos(A-$\frac{π}{3}$),
∵sinA≠0,
∴cos(A-$\frac{π}{3}$)=$\frac{1}{2}$,
∵A為三角形內(nèi)角,
∴A=$\frac{2π}{3}$;
(2)由余弦定理得:a2=b2+c2-2bccosA,
即3=b2+c2-bc=(b+c)2-3bc≥(b+c)2-$\frac{3(b+c)^{2}}{4}$=$\frac{(b+c)^{2}}{4}$,
即(b+c)2≤12,
解得:-2$\sqrt{3}$≤b+c≤2$\sqrt{3}$,
∵b+c>a=$\sqrt{3}$,
∴b+c的范圍為$\sqrt{3}$<b+c≤2$\sqrt{3}$.
點(diǎn)評 此題考查了余弦定理,基本不等式的運(yùn)用,以及同角三角函數(shù)間的基本關(guān)系,熟練掌握余弦定理是解本題的關(guān)鍵.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 16 | B. | 8 | C. | 4 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\frac{1}{4}$ | C. | $\frac{1}{5}$ | D. | $\frac{1}{10}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
評分等級 | [0,1] | (1,2] | (2,3] | (3,4] | (4,5] |
女(人數(shù)) | 2 | 8 | 10 | 18 | 12 |
男(人數(shù)) | 4 | 9 | 19 | 10 | 8 |
滿意該商品 | 不滿意該商品 | 總計(jì) | |
女 | 30 | 20 | 50 |
男 | 18 | 32 | 50 |
總計(jì) | 48 | 52 | 100 |
P(K2≥k0) | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com