拋物線上的動(dòng)點(diǎn)到直線和直線的距離之和得最小值是         
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分15分)
如圖所示,已知直線的斜率為且過點(diǎn),拋物線, 直線與拋物線有兩個(gè)不同的交點(diǎn),是拋物線的焦點(diǎn),點(diǎn)為拋物線內(nèi)一定點(diǎn),點(diǎn)為拋物線上一動(dòng)點(diǎn).
(1)求的最小值;
(2)求的取值范圍;
(3)若為坐標(biāo)原點(diǎn),問是否存在點(diǎn),使過點(diǎn)的動(dòng)直線與拋物線交于兩點(diǎn),且以為直徑的圓恰過坐標(biāo)原點(diǎn), 若存在,求出動(dòng)點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

(本題滿分13分)
已知頂點(diǎn)在坐標(biāo)原點(diǎn),焦點(diǎn)為的拋物線與直線相交于兩點(diǎn),.
(1)求拋物線的標(biāo)準(zhǔn)方程;
(2)求的值; 
(3)當(dāng)拋物線上一動(dòng)點(diǎn)從點(diǎn)運(yùn)動(dòng)時(shí),求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分14分)
軸上動(dòng)點(diǎn)引拋物線的兩條切線、,、為切點(diǎn),設(shè)切線,的斜率分別為.
(1)求證:;
(2)試問:直線是否經(jīng)過定點(diǎn)?若是,求出該定點(diǎn)坐標(biāo);若不是,請(qǐng)說明理由. 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(、(本題16分)
如圖,有一塊拋物線形狀的鋼板,計(jì)劃將此鋼板切割成等腰梯形的形狀,使得都落在拋物線上,點(diǎn)關(guān)于拋物線的軸對(duì)稱,且,拋物線的頂點(diǎn)到底邊的距離是,記,梯形面積為
(1)以拋物線的頂點(diǎn)為坐標(biāo)原點(diǎn),其對(duì)稱軸為軸建立坐標(biāo)系,使拋物線開口向下,求出該拋物線的方程;
(2)求面積關(guān)于的函數(shù)解析式,并寫出其定義域;
(3)求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(12分)直線與拋物線(p0)交于A、B兩點(diǎn),且(O為坐標(biāo)原點(diǎn)),求證:
(1)A、B兩點(diǎn)的橫坐標(biāo)之積,縱坐標(biāo)之積都是常數(shù);
(2)直線AB經(jīng)過x軸上一個(gè)定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

拋物線的焦點(diǎn)坐標(biāo)是(   )
A.(1,0)B.(0,1)C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

.已知拋物線上的動(dòng)點(diǎn)軸上的射影為的最小值為(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

(本題滿分15分)已知拋物線>0),直線、都過點(diǎn)P(1,-2)且都與拋物線相切。
(1)若,求的值。
(2)直線、與分別與軸相交于A、B兩點(diǎn),求△PAB面積S的取值范圍。
直線、與分別與相交于A、B兩點(diǎn),求△PAB面積S的取值范圍。

查看答案和解析>>

同步練習(xí)冊(cè)答案