精英家教網 > 高中數學 > 題目詳情
若多項式(1+x)m=a0+a1x+a2x2+…+amxm滿足:a1+2a2+…+mam=448,則不等式
1
a3
+
2
a3
+…+
n
a3
3
4
成立時,正整數n的最小值為
7
7
分析:利用函數的導數,通過x=1求出的值,然后求出a3,利用數列求和結合不等式求出n的值.
解答:解:設y=(1+x)m=a0+a1x+a2x2+…+amxm,
y′=m(1+x)m-1=a1+2a2x+3a3x2+…+mamxm-1,
令x=1,得2m-1m=a1+2a2+3a3+…+mam=448=26×7.
解得m=7.∴a3=C73=35.
1
35
+
2
35
+…+
n
35
=
n(1+n)
70
3
4
,
解得n>6.
正整數n的最小值為:7.
故答案為:7.
點評:本題考查二項式定理的應用,函數的導數數列求和,考查轉化思想以及計算能力.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

若多項式(1+x)m=a0+a1x+a2x2+…+amxm滿足:a1+2a2+3a3+…+mam=80,則
lim
n→∞
(
1
a4
+
1
a
2
4
+
1
a
3
4
+…+
1
a
n
4
)
的值是( 。
A、
1
3
B、
1
4
C、
1
5
D、
1
6

查看答案和解析>>

科目:高中數學 來源:黃岡模擬 題型:單選題

若多項式(1+x)m=a0+a1x+a2x2+…+amxm滿足:a1+2a2+3a3+…+mam=80,則
lim
n→∞
(
1
a4
+
1
a24
+
1
a34
+…+
1
an4
)
的值是( 。
A.
1
3
B.
1
4
C.
1
5
D.
1
6

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

若多項式(1+x)m=a0+a1x+a2x2+…+amxm滿足:a1+2a2+…+mam=448,則不等式
1
a3
+
2
a3
+…+
n
a3
3
4
成立時,正整數n的最小值為______.

查看答案和解析>>

科目:高中數學 來源:2011年湖北省黃岡市高三三月調考數學試卷(理科)(解析版) 題型:選擇題

若多項式(1+x)m=a+a1x+a2x2+…+amxm滿足:a1+2a2+3a3+…+mam=80,則的值是( )
A.
B.
C.
D.

查看答案和解析>>

同步練習冊答案