定義在(—,0)(0,+)上的函數(shù),如果對于任意給定的等比數(shù)列{},{)仍是等比數(shù)列,則稱為“保等比數(shù)列函數(shù)”.現(xiàn)有定義在(—,0)(0,+)上的如下函數(shù):①=:②;③;④.則其中是“保等比數(shù)列函數(shù)”的的序號為(     )

A.①②             B.③④             C.①③             D.②④

 

【答案】

C

【解析】

試題分析:由等比數(shù)列的性質知,

,故正確;

;故不正確;

,故正確;

,故不正確;故選C.

考點:等比關系的確定

點評:本題考查等比數(shù)列性質及函數(shù)計算,正確運算,理解新定義是解題的關鍵.

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知f(x)為定義在(-∞,+∞)上的可導函數(shù),且f(x)<f′(x)對于x∈R恒成立,則( 。
A、f(2)>e2f(0),f(2010)>e2010f(0)B、f(2)<e2f(0),f(2010)>e2010f(0)C、f(2)>e2f(0),f(2010)<e2010f(0)D、f(2)<e2f(0),f(2010)<e2010f(0)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知定義在實數(shù)集R上的函數(shù)f(x)=ax3+bx2+cx+d,其中a,b,c,d是實數(shù).
(1)若函數(shù)f(x)在區(qū)間(-∞,-1)和(3,+∞)上都是增函數(shù),在區(qū)間(-1,3)上是減函數(shù),并且f(0)=-7,f′(0)=-18,求函數(shù)f(x)的表達式;
(2)若a,b,c滿足b2-3ac<0,求證:函數(shù)f(x)是單調(diào)函數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=ax2+(a-2b)x+a-1是定義在(-a,0)∪(0,2a-2)上的偶函數(shù),則f(
a2+b25
)
=
3
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

定義在R上的函數(shù)f(x)滿足:對于任意實數(shù)a,b總有f(a+b)=f(a)•f(b),當x>0時,0<f(x)<1,且f(1)=
1
2

(Ⅰ)用定義法證明:函數(shù)f(x)在(-∞,+∞)上為減函數(shù);
(Ⅱ)解關于x的不等式f(kx2-5kx+6k)•f(-x2+6x-7)>
1
4
(k∈R);
(Ⅲ)若x∈[-1,1],求證:
8k+27k+1
3
6k•f(x)
2
(k∈R).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•朝陽區(qū)一模)函數(shù)f(x)是定義在R上的偶函數(shù),且滿足f(x+2)=f(x).當x∈[0,1]時,f(x)=2x.若在區(qū)間[-2,2]上方程ax+a-f(x)=0恰有三個不相等的實數(shù)根,則實數(shù)a的取值范圍是
[0,1)
[0,1)

查看答案和解析>>

同步練習冊答案