精英家教網 > 高中數學 > 題目詳情
10.設△ABC的內角A,B,C所對的邊分別為a,b,c,且b,a,c三邊恰好成等差數列,3sinA=5sinB,則角C=( 。
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{2π}{3}$D.$\frac{5π}{6}$

分析 根據a,b,c成等差數列得2a=b+c,再由正弦定理將3sinA=5sinB轉化為3a=5b,從而將b、c用a表示,代入余弦定理即可求出cosC,即可得出∠C.

解答 解:∵b,a,c成等差數列,
∴2a=b+c,
∵由正弦定理知,3sinA=5sinB可化為:3a=5b,即b=$\frac{3a}{5}$,
∴代入2a=b+c得,c=$\frac{7a}{5}$,
∴由余弦定理得,cosC=$\frac{{a}^{2}+^{2}-{c}^{2}}{2ab}$=$\frac{{a}^{2}+\frac{9{a}^{2}}{25}-\frac{49{a}^{2}}{25}}{2×a×\frac{3a}{5}}$=-$\frac{1}{2}$,
∴C=$\frac{2π}{3}$.
故選:C.

點評 本題考查等差數列的性質,正弦定理和余弦定理的應用,考查了計算能力和轉化思想,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:填空題

20.1-$\frac{1}{2}$=$\frac{1}{2}$…①,
1-$\frac{1}{2}$+$\frac{1}{3}$-$\frac{1}{4}$=$\frac{1}{3}$+$\frac{1}{4}$…②,
1-$\frac{1}{2}$+$\frac{1}{3}$-$\frac{1}{4}$+$\frac{1}{5}$-$\frac{1}{6}$=$\frac{1}{4}$+$\frac{1}{5}$+$\frac{1}{6}$…③,…
根據以上事實,由歸納推理可得:
1-$\frac{1}{2}$+$\frac{1}{3}$-$\frac{1}{4}$+$\frac{1}{5}$-$\frac{1}{6}$+$\frac{1}{7}$-$\frac{1}{8}$=$\frac{1}{5}$+$\frac{1}{6}$+$\frac{1}{7}$+$\frac{1}{8}$
當n∈N*時,1-$\frac{1}{2}$+$\frac{1}{3}$-$\frac{1}{4}$…+$\frac{1}{200n-1}$-$\frac{1}{200n}$=$\frac{1}{100n+1}$+…+$\frac{1}{200n-1}$+$\frac{1}{200n}$.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

1.第12屆全國人大四次會議于2016年3月5日至3月16日在北京召開.為了搞好對外宣傳工作,會務組選聘了16名男記者和14名女記者擔任對外翻譯工作,調查發(fā)現,男、女記者中分別有10人和6人會俄語.
(1)根據以上數據完成以下2×2列聯表:
會俄語不會俄語總計
總計30
(2)能否在犯錯的概率不超過0.10的前提下認為性別與會俄語有關?
下面的臨界值表供參考:
 P(K2≥k)0.150.100.050.0250.0100.0050.001
  k2.0722.7063.8415.0246.6357.87910.828
(參考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

18.已知各項為正的等比數列{an}中,a3•a7=9,則a5=(  )
A.2B.3C.6D.9

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

5.已知2,a,b,c,32構成等比數列,則b的值為( 。
A.8B.-8C.8或-8D.4或-4

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

15.在△ABC中,內角A,B,C對應的三邊長分別為a,b,c,且滿足c(acosB-$\frac{1}{2}$b)=a2-b2
(1)求角A;
(2)若a=$\sqrt{3}$,b-c=1,求△ABC的面積.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

2.已知橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左焦點F1(-c,0),右焦點F2(c,0),若橢圓上存在一點P,使|PF1|=2c,∠F1PF2=30°,則該橢圓的離心率e為$\frac{\sqrt{3}-1}{2}$.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

19.若C${\;}_{15}^{2n}$=C${\;}_{15}^{9-n}$,則n=3或6.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

20.若($\sqrt{x}$-$\frac{a}{{x}^{2}}$)n展開式中二項式系數之和是32,常數項為15,則實數a=-3.

查看答案和解析>>

同步練習冊答案