【題目】已知橢圓 過點,且兩個焦點的坐標分別為, .

(1)求的方程;

(2)若, , 上的三個不同的點, 為坐標原點,且,求證:四邊形的面積為定值.

【答案】(1) ;(2)證明見解析.

【解析】試題分析】(1)通過橢圓的定義求得,,由此求得,進而求得橢圓方程.(2)設出直線的方程,聯(lián)立直線的方程和橢圓的方程,寫出韋達定理,代入,利用弦長公式求得,利用點到直線的距離公式求得原點到直線的距離,由此求得四邊形的面積.

試題解析】

(1)由已知得,

,則的方程為;

(2)當直線的斜率不為零時,可設代入得:

,

,則,

,由,得

∵點在橢圓上,∴,即,∴

,

原點到直線的距離為.

∴四邊形的面積: .

的斜率為零時,四邊形的面積

∴四邊形的面積為定值.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知正項等比數(shù)列,等差數(shù)列滿足,且的等比中項.

(1)求數(shù)列的通項公式;

(2)設,求數(shù)列的前項和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)在區(qū)間上有最大值3和最小值.

(1)求實數(shù)的值;

(2)設,若不等式上恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知a,b,c分別是△ABC的內(nèi)角A,B,C的對邊,若△ABC的周長為2(+1),且sin B+sin C=sin A,則a= (  )

A. B. 2 C. 4 D.

【答案】B

【解析】

根據(jù)正弦定理把轉(zhuǎn)化為邊的關(guān)系,進而根據(jù)ABC的周長,聯(lián)立方程組,可求出a的值.

根據(jù)正弦定理,可化為

∵△ABC的周長為,

聯(lián)立方程組

解得a=2.

故選:B

【點睛】

(1)在三角形中根據(jù)已知條件求未知的邊或角時,要靈活選擇正弦、余弦定理進行邊角之間的轉(zhuǎn)化,以達到求解的目的.

(2)求角的大小時,在得到角的某一個三角函數(shù)值后,還要根據(jù)角的范圍才能確定角的大小,這點容易被忽視,解題時要注意.

型】單選題
結(jié)束】
7

【題目】已知數(shù)列{an}中,an=n2-kn(n∈N*),且{an}單調(diào)遞增,則k的取值范圍是(  )

A. (-∞,2] B. (-∞,2) C. (-∞,3] D. (-∞,3)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知曲線C1y=cos x,C2y=sin (2x+),則下面結(jié)論正確的是( )

A. C1上各點的橫坐標伸長到原來的2倍,縱坐標不變,再把得到的曲線向右平移個單位長度,得到曲線C2

B. C1上各點的橫坐標伸長到原來的2倍,縱坐標不變,再把得到的曲線向左平移個單位長度,得到曲線C2

C. C1上各點的橫坐標縮短到原來的倍,縱坐標不變,再把得到的曲線向右平移個單位長度,得到曲線C2

D. C1上各點的橫坐標縮短到原來的倍,縱坐標不變,再把得到的曲線向左平移個單位長度,得到曲線C2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某快遞公司收取快遞費用的標準是:重量不超過的包裹收費10元;重量超過的包裹,除收費10元之外,超過的部分,每超出(不足,按計算)需再收5元.

該公司對近60天,每天攬件數(shù)量統(tǒng)計如下表:

(1)某人打算將三件禮物隨機分成兩個包裹寄出,求該人支付的快遞費不超過30元的概率;

(2)該公司從收取的每件快遞的費用中抽取5元作為前臺工作人員的工資和公司利潤,剩余的作為其他費用.前臺工作人員每人每天攬件不超過150件,工資100元,目前前臺有工作人員3人,那么,公司將前臺工作人員裁員1人對提高公司利潤是否更有利?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,已知橢圓C的離心率為,右準線方程為

求橢圓C的標準方程;

已知斜率存在且不為0的直線l與橢圓C交于A,B兩點,且點A在第三象限內(nèi)為橢圓C的上頂點,記直線MA,MB的斜率分別為

若直線l經(jīng)過原點,且,求點A的坐標;

若直線l過點,試探究是否為定值?若是,請求出定值;若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線的頂點在坐標原點,過拋物線的焦點的直線與該拋物線交于兩點, 面積的最小值為2

1)求拋物線的標準方程;

2)試問是否存在定點,過點的直線與拋物線交于兩點,當三點不共線時,使得以為直徑的圓必過點.若存在,求出所有符合條件的點;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在直三棱柱ABC-A1B1C1中,DE分別為AB,BC的中點,點F在側(cè)棱B1B上,且, .

求證:(1)直線DE平面A1C1F;

2)平面B1DE⊥平面A1C1F.

查看答案和解析>>

同步練習冊答案