5.化簡$\frac{sin24°cos6°-sin66°sin6°}{sin21°cos39°-cos21°sin39°}$.

分析 直接利用兩角和與差的三角函數(shù)化簡求解即可.

解答 解:$\frac{sin24°cos6°-sin66°sin6°}{sin21°cos39°-cos21°sin39°}$=$\frac{sin24°cos6°-cos24°sin6°}{sin21°cos39°-cos21°sin39°}$=$\frac{sin18°}{-sin18°}$=-1.

點評 本題考查兩角和與差的三角函數(shù),三角函數(shù)的化簡求值,考查計算能力.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

15.拋物線y2=8x上到焦點距離等于6的橫坐標為( 。
A.2B.4C.6D.8

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.在平面四邊形ABCD中,∠A=∠B=60°,∠D=150°,BC=1,則四邊形ABCD面積的取值范圍是($\frac{\sqrt{3}}{4}$,$\frac{\sqrt{3}}{2}$).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.設x(1-x)6=a1x+a2x2+a3x3+a4x4+a5x5+a6x6+a7x7,則2a1+4a2+8a3+16a4+32a5+64a6+128a7等于( 。
A.-2B.0C.1D.2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.已知角α的終邊過點P(-8m,-6sin30°),且cosα=-$\frac{4}{5}$,則m的值為$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.已知數(shù)列{an}中,a1=1,且當n∈N*時,有$\frac{1}{n+1}$a1+$\frac{2}{n+1}$a2+$\frac{3}{n+1}$a3+…+$\frac{n}{n+1}$an=$\frac{1}{2}$an+1,求數(shù)列{an}的通項公式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.將函數(shù)y=sin(2x+$\frac{π}{3}$),x∈R的圖象向左平移h(h>0)個單位長度后,所得圖象關于y軸對稱,則h的最小值為$\frac{π}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.已知f(x)=2x+a,g(x)=$\frac{1}{4}$(x2+3),若g[f(x)]=x2-a2x+1,求a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.已知在三棱錐P-ABC中,PA=PB=BC=1,AB=$\sqrt{2}$,AB⊥BC,平面PAB⊥平面ABC,若三棱錐的頂點在同一個球面上,則該球的表面積為3π.

查看答案和解析>>

同步練習冊答案