在平面直角坐標(biāo)系中,直線的參數(shù)方程為:(為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(Ⅰ)求曲線的平面直角坐標(biāo)方程;
(Ⅱ)設(shè)直線與曲線交于點(diǎn),若點(diǎn)的坐標(biāo)為,求的值.
(Ⅰ);(Ⅱ).
【解析】
試題分析:(Ⅰ)直接根據(jù)極坐標(biāo)方程與直角坐標(biāo)的轉(zhuǎn)換關(guān)系式結(jié)合三角函數(shù)中的兩角和與差的三角函數(shù)公式即可實(shí)現(xiàn)將曲線的參數(shù)方程化為直角坐標(biāo)方程;(Ⅱ)先將直線的參數(shù)方程與曲線的直角坐標(biāo)方程聯(lián)立轉(zhuǎn)化為含的一元二次方程,然后根據(jù)參數(shù)方程中的相關(guān)理論直接求的值.
試題解析:(Ⅰ)由,得,
當(dāng)時(shí),得,
對應(yīng)直角坐標(biāo)方程為:.
當(dāng),有實(shí)數(shù)解,說明曲線過極點(diǎn),而方程所表示的曲線也過原點(diǎn).
∴曲線的直角坐標(biāo)方程為. 3分
(Ⅱ)把直線的參數(shù)方程代入曲線的直角坐標(biāo)方程,得,
即,由于,故可設(shè)是上述方程的兩實(shí)根,
則. 5分
∵直線過點(diǎn),
∴由的幾何意義,可得. 7分
考點(diǎn):極坐標(biāo)與參數(shù)方程、韋達(dá)定理
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
π | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
π |
2 |
3π |
2 |
AC |
BC |
π |
2 |
2 |
3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com