設滿足以下兩個條件的有窮數(shù)列為階“期待數(shù)列”:
①;②.
(1)若等比數(shù)列為 ()階“期待數(shù)列”,求公比;
(2)若一個等差數(shù)列既是 ()階“期待數(shù)列”又是遞增數(shù)列,求該數(shù)列的通項公式;
(3)記階“期待數(shù)列”的前項和為:
(。┣笞C:;
(ⅱ)若存在使,試問數(shù)列能否為階“期待數(shù)列”?若能,求出所有這樣的數(shù)列;若不能,請說明理由.
(1).(2).(3)(。├们皀項和進行放縮證明.(ⅱ)數(shù)列和數(shù)列不能為階“期待數(shù)列”.
【解析】
試題分析:(1)若,則由①=0,得,
由②得或.
若,由①得,,得,不可能.
綜上所述,.
(2)設等差數(shù)列的公差為,>0.
∵,∴,
∴,
∵>0,由得,,
由題中的①、②得,
,
兩式相減得,, ∴,
又,得,
∴.
(3)記,,…,中非負項和為,負項和為,
則,,得,,
(。,即.
(ⅱ)若存在使,由前面的證明過程知:
,,…,,,,…,,
且….
記數(shù)列的前項和為,
則由(。┲,,
∴=,而,
∴,從而,,
又…,
則,
∴,
與不能同時成立,
所以,對于有窮數(shù)列,若存在使,則數(shù)列和數(shù)列不能為階“期待數(shù)列”.
考點:本題考查了數(shù)列的通項公式及前n項和
點評:數(shù)列的通項公式及應用是數(shù)列的重點內容,數(shù)列的大題對邏輯推理能力有較高的要求,在數(shù)列中突出考查學生的理性思維,這是近幾年新課標高考對數(shù)列考查的一個亮點,也是一種趨勢
科目:高中數(shù)學 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
1 | 2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
1 |
2 |
n |
i=1 |
ai |
i |
1 |
2 |
1 |
2n |
查看答案和解析>>
科目:高中數(shù)學 來源:2013-2014學年安徽省安慶市望江二中高三(上)第一次月考數(shù)學試卷(理科)(解析版) 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com