設滿足以下兩個條件的有窮數(shù)列階“期待數(shù)列”:

;②

(1)若等比數(shù)列 ()階“期待數(shù)列”,求公比;

(2)若一個等差數(shù)列既是 ()階“期待數(shù)列”又是遞增數(shù)列,求該數(shù)列的通項公式;

(3)記階“期待數(shù)列”的前項和為

(。┣笞C:;

(ⅱ)若存在使,試問數(shù)列能否為階“期待數(shù)列”?若能,求出所有這樣的數(shù)列;若不能,請說明理由.

 

【答案】

(1).(2).(3)(。├们皀項和進行放縮證明.(ⅱ)數(shù)列和數(shù)列不能為階“期待數(shù)列”.

【解析】

試題分析:(1)若,則由①=0,得

由②得

,由①得,,得,不可能.

綜上所述,

(2)設等差數(shù)列的公差為>0.

,∴,

,

>0,由,,

由題中的①、②得

,

兩式相減得,, ∴

,得

(3)記,,…,中非負項和為,負項和為

,,得,,

(。,即

(ⅱ)若存在使,由前面的證明過程知:

,,…,,,…,

記數(shù)列的前項和為,

則由(。┲,,

=,而

,從而,

,

,

不能同時成立,

所以,對于有窮數(shù)列,若存在使,則數(shù)列和數(shù)列不能為階“期待數(shù)列”.

考點:本題考查了數(shù)列的通項公式及前n項和

點評:數(shù)列的通項公式及應用是數(shù)列的重點內容,數(shù)列的大題對邏輯推理能力有較高的要求,在數(shù)列中突出考查學生的理性思維,這是近幾年新課標高考對數(shù)列考查的一個亮點,也是一種趨勢

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

設滿足以下兩個條件的有窮數(shù)列a1,a2,…,an為n(n=2,3,4,…,)階“期待數(shù)列”:①a1+a2+a3+…+an=0;②|a1|+|a2|+|a3|+…+|an|=1.
(1)分別寫出一個單調遞增的3階和4階“期待數(shù)列”;
(2)若某2k+1(k∈N*)階“期待數(shù)列”是等差數(shù)列,求該數(shù)列的通項公式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•豐臺區(qū)一模)設滿足以下兩個條件的有窮數(shù)列a1,a2,…,an為n(n=2,3,4,…,)階“期待數(shù)列”:
①a1+a2+a3+…+an=0;
②|a1|+|a2|+|a3|+…+|an|=1.
(Ⅰ)分別寫出一個單調遞增的3階和4階“期待數(shù)列”;
(Ⅱ)若某2013階“期待數(shù)列”是等差數(shù)列,求該數(shù)列的通項公式;
(Ⅲ)記n階“期待數(shù)列”的前k項和為Sk(k=1,2,3,…,n),試證:|Sk|≤
12

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•豐臺區(qū)一模)設滿足以下兩個條件的有窮數(shù)列a1,a2,…,an為n(n=2,3,4,…,)階“期待數(shù)列”:
①a1+a2+a3+…+an=0;
②|a1|+|a2|+|a3|+…+|an|=1.
(Ⅰ)分別寫出一個單調遞增的3階和4階“期待數(shù)列”;
(Ⅱ)若某2k+1(k∈N*)階“期待數(shù)列”是等差數(shù)列,求該數(shù)列的通項公式;
(Ⅲ)記n階“期待數(shù)列”的前k項和為Sk(k=1,2,3,…,n),試證:
(1)|Sk|≤
1
2
;     
(2)|
n
i=1
ai
i
|≤
1
2
-
1
2n

查看答案和解析>>

科目:高中數(shù)學 來源:2013-2014學年安徽省安慶市望江二中高三(上)第一次月考數(shù)學試卷(理科)(解析版) 題型:解答題

設滿足以下兩個條件的有窮數(shù)列a1,a2,…,an為n(n=2,3,4,…,)階“期待數(shù)列”:①a1+a2+a3+…+an=0;②|a1|+|a2|+|a3|+…+|an|=1.
(1)分別寫出一個單調遞增的3階和4階“期待數(shù)列”;
(2)若某2k+1(k∈N*)階“期待數(shù)列”是等差數(shù)列,求該數(shù)列的通項公式.

查看答案和解析>>

同步練習冊答案