【題目】如圖,直三棱柱中,,,的中點(diǎn),是等腰三角形,的中點(diǎn),上一點(diǎn)

I平面,求;

II平面將三棱柱分成兩個(gè)部分,求較小部分與較大部分的體積之比

【答案】III

【解析】

試題分析:I借助題設(shè)條件運(yùn)用線面的位置關(guān)系求解;II借助題設(shè)運(yùn)用體積割補(bǔ)的方法探求

試題解析:

I中點(diǎn)為,連接,………………1分

分別,為中點(diǎn),

四點(diǎn)共面,………………3分

且平面平面

平面,且平面,

的中點(diǎn),的中點(diǎn),………………6分

II因?yàn)槿庵?/span>為直三棱柱,平面,

,則平面,

設(shè),又三角形是等腰三角形,所以

如圖,將幾何體補(bǔ)成三棱柱

幾何體的體積為:

………………9分

又直三棱柱體積為:,………………11分

故剩余的幾何體棱臺(tái)的體積為

較小部分的體積與較大部分體積之比為:………………12分

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,記二次函數(shù))與兩坐標(biāo)軸有三個(gè)交點(diǎn),其中與x軸的交點(diǎn)為A,B.經(jīng)過(guò)三個(gè)交點(diǎn)的圓記為

(1)求圓的方程;

(2)設(shè)P為圓上一點(diǎn),若直線PA,PB分別交直線于點(diǎn)M,N,則以MN為直徑的圓是否經(jīng)過(guò)線段AB上一定點(diǎn)?請(qǐng)證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線的頂點(diǎn)在原點(diǎn),焦點(diǎn)在坐標(biāo)軸上,點(diǎn)為拋物線上一點(diǎn).

(1)求的方程;

(2)若點(diǎn)上,過(guò)的兩弦,若,求證: 直線過(guò)定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】眾所周知,乒乓球是中國(guó)的國(guó)球,乒乓球隊(duì)內(nèi)部也有著很?chē)?yán)格的競(jìng)爭(zhēng)機(jī)制,為了參加國(guó)際大賽,種子選手甲與三位非種子選手乙、丙、丁分別進(jìn)行一場(chǎng)內(nèi)部對(duì)抗賽,按以往多次比賽的統(tǒng)計(jì),甲獲勝的概率分別為,,且各場(chǎng)比賽互不影響

1若甲至少獲勝兩場(chǎng)的概率大于,則甲入選參加國(guó)際大賽參賽名單,否則不予入選,問(wèn)甲是否會(huì)入選最終的大名單?

2求甲獲勝場(chǎng)次的分布列和數(shù)學(xué)期望

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)不等式組所表示的平面區(qū)域?yàn)?/span>,記內(nèi)的整點(diǎn)個(gè)數(shù)為,(整點(diǎn)即橫、縱坐標(biāo)均為整數(shù)的點(diǎn))

(1)計(jì)算的值;

(2)求數(shù)列的通項(xiàng)公式

(3)記數(shù)列的前項(xiàng)和為,且,若對(duì)于一切的正整數(shù),總有,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在五棱錐中,平面,,,,, ,是等腰三角形.

(1)求證:平面平面;

2求側(cè)棱上是否存在點(diǎn),使得與平面所成角大小為,若存在,求出點(diǎn)位置,若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在某次測(cè)量中得到的A樣本數(shù)據(jù)如下:8284,8486,86,8688,88,8888,若樣本B數(shù)據(jù)恰好是樣本A數(shù)據(jù)都加上2后所得數(shù)據(jù),A,B兩樣本的下列數(shù)字特征對(duì)應(yīng)相同的是(  )

A. 眾數(shù) B. 平均數(shù)

C. 中位數(shù) D. 標(biāo)準(zhǔn)差

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(1)當(dāng)時(shí),求函數(shù)的最小值;

(2)若函數(shù)的最小值為,令,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】菜農(nóng)定期使用低害殺蟲(chóng)農(nóng)藥對(duì)蔬菜進(jìn)行噴灑, 以防止害蟲(chóng)的危害, 但采集上市時(shí)蔬菜仍存有少量的殘留農(nóng)藥, 食用時(shí)需要用清水清洗干凈, 下表是用清水(單位:千克) 清洗該蔬菜千克后, 蔬菜上殘留的農(nóng)藥(單位:微克) 的統(tǒng)計(jì)表:

(1)在下面的坐標(biāo)系中, 描出散點(diǎn)圖, 并判斷變量的相關(guān)性;

(2)若用解析式作為蔬菜農(nóng)藥殘量與用水量的回歸方程, ,計(jì)算平均值,完成以下表格(填在答題卡中) ,求出的回歸方程.( 精確到)

(3)對(duì)于某種殘留在蔬菜上的農(nóng)藥,當(dāng)它的殘留量低于微克時(shí)對(duì)人體無(wú)害, 為了放心食用該蔬菜, 請(qǐng)

估計(jì)需要用多少千克的清水清洗一千克蔬菜?(精確到,參考數(shù)據(jù))

(附:線性回歸方程中系數(shù)計(jì)算公式分別為;

, )

查看答案和解析>>

同步練習(xí)冊(cè)答案