16.用數(shù)學歸納法證明不等式$\frac{1}{n+1}$+$\frac{1}{n+2}$+…+$\frac{1}{n+n}$>$\frac{13}{24}$(n>2,且n∈N*)的過程中,由n=k遞推到n=k+1時,不等式左邊( 。
A.增加了一項$\frac{1}{2(k+1)}$
B.增加了兩項$\frac{1}{2k+1}$,$\frac{1}{2(k+1)}$
C.增加了B中的兩項,但又減少了另一項$\frac{1}{k+1}$
D.增加了A中的一項,但又減少了另一項$\frac{1}{k+1}$

分析 當n=k時,寫出左端,并當n=k+1時,寫出左端,兩者比較,關鍵是最后一項和增加的第一項的關系.

解答 解:當n=k時,左端$\frac{1}{k+1}$+$\frac{1}{k+2}$+…+$\frac{1}{k+k}$,
那么當n=k+1時  左端=$\frac{1}{k+2}$+$\frac{1}{k+3}$…+$\frac{1}{k+k}$+$\frac{1}{2k+1}$+$\frac{1}{2k+2}$,
故第二步由k到k+1時不等式左端的變化是增加了$\frac{1}{2k+1}$,$\frac{1}{2k+2}$兩項,同時減少了$\frac{1}{k+1}$這一項,
故選:C.

點評 本題考查數(shù)學歸納法,考查觀察、推理與運算能力,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

6.在△ABC中,角A,B,C的對邊分別為a,b,c.若$\frac{a}{b+c}+\frac{a+c}$=1,則角C=( 。
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{2π}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.已知函數(shù)f(x)=log3x+x-5的零點x0∈(a,a+1),則整數(shù)a的值為3.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.已知函數(shù)f(x)=x3-x2+x+2.
(1)求曲線f(x)在點(1,f(1))處的切線方程;
(2)求經(jīng)過點A(1,3)的曲線f(x)的切線方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.求曲線y=x3-$\frac{1}{x}$在點(1,0)處的切線方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.當x>0時,不等式x2+ax+3>0恒成立,則實數(shù)a的取值范圍是(  )
A.(-2$\sqrt{3}$,2$\sqrt{3}$)B.(2$\sqrt{3}$,+∞)C.(-2$\sqrt{3}$,0)∪(2$\sqrt{3}$,+∞)D.(-2$\sqrt{3}$,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.為了了解創(chuàng)建金臺區(qū)教育現(xiàn)代化過程中學生對創(chuàng)建工作的滿意情況,相關部門對某中學的100名學生進行調(diào)查.得到如下的統(tǒng)計表:
滿意不滿意合計
男生50
女生15
合計100
已知在全部100名學生中隨機抽取1人對創(chuàng)建工作滿意的概率為$\frac{4}{5}$.
(1)在上表中的空白處填上相應的數(shù)據(jù);
(2)是否有充足的證據(jù)說明學生對創(chuàng)建工作的滿意情況與性別有關?
附:Χ2=$\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.
參考數(shù)據(jù)當Χ2≤2.706時,無充分證據(jù)判定變量A,B有關聯(lián),可以認為兩變量無關聯(lián);
當Χ2>2.706時,有90%的把握判定變量A,B有關聯(lián);
當Χ2>3.841時,有95%的把握判定變量A,B有關聯(lián);
當Χ2>6.635時,有99%的把握判定變量A,B有關聯(lián).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.設變量x,y滿足約束條件$\left\{\begin{array}{l}{2x+y-2≥0}\\{x-2y+4≥0}\\{x-1≤0}\end{array}\right.$,則目標函數(shù)z=x-4y的最小值為(  )
A.-3B.2C.-9D.5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.甲、乙兩個籃球運動員互不影響地在同一位置投球,命中率分別為$\frac{1}{2}$與p,且乙投球3次均未命中的概率為$\frac{1}{27}$.
(1)求乙投球的命中率p;
(2)若甲投球1次,乙投球2次,兩人共命中的次數(shù)記為ξ,求ξ的分布列和數(shù)學期望.

查看答案和解析>>

同步練習冊答案