若-1<sinA<0.5,則∠A的取值范圍為
 
考點(diǎn):三角函數(shù)線
專題:三角函數(shù)的圖像與性質(zhì)
分析:在單位圓中作出滿足sinx=-1和sinx=0.5的角的正弦線,觀察得到在一個周期內(nèi)滿足弦線大于-1,小于0.5的角的范圍,由此結(jié)合終邊相同的角的集合,即可得到滿足條件A的范圍.
解答: 解:解:如圖,作出滿足sinx=0.5的角的正弦線M1P1和M2P2,

可得∠M20P2=
π
6
,∠M10P1=
6
,
當(dāng)角的終邊位于圖中陰影部分時,正弦線小于0.5,其中x=-
π
2
時的正弦線為-1,
所以滿足-1<sinA<0.5的A的范圍是{x|2kπ+
6
<A<2kπ+
13π
6
并且A≠2kπ-
π
2
}(k∈Z);
故答案為:{x|2kπ+
6
<A<2kπ+
13π
6
并且A≠2kπ-
π
2
}(k∈Z);
點(diǎn)評:本題求滿足條-1<sinA<0.5的解集.著重考查了終邊相同的角的集合、三角函數(shù)的定義與三角函數(shù)線的作法等知識.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知遞增等差數(shù)列{an}中的a2,a5是函數(shù)f(x)=x2-7x+10的兩個零點(diǎn).?dāng)?shù)列{bn}滿足,點(diǎn)(bn,Sn)在直線y=-x+1上,其中Sn是數(shù)列{bn}的前n項(xiàng)和.
(1)求數(shù)列{an}和{bn}的通項(xiàng)公式;
(2)令cn=an•bn,求數(shù)列{cn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖是正方體ABCD-A′B′C′D′中,異面直線A′D與CD′所成的角是( 。
A、30°B、45°
C、60°D、90°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

命題p:在區(qū)間[1,+∞)上至少有一個x0,使得x03-x0-1>0,則¬p為(  )
A、?x∈[1,+∞),x3-x-1≤0
B、?x∈(-∞,1],x3-x-1≤0
C、?x0∈[1,+∞),x03-x0-1≤0
D、?x0∈(-∞,1],x03-x0-1≤0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,直三棱柱ABC-A1B1C1中,CC1=3,底面是邊長為2的正三角形,點(diǎn)E,F(xiàn)分別是棱CC1,BB1上的點(diǎn),點(diǎn)M是線段AC上的動點(diǎn),EC=2FB.
(1)求三棱柱ABC-A1B1C1的表面積;
(2)點(diǎn)M在何位置時,BM∥平面AEF,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知Sn=
1
a
+
2
a2
+
3
a3
+…+
n
an
,則當(dāng)a=2時,S6=( 。
A、
9
4
B、
17
8
C、2
D、
15
8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知四面體ABCD的外接球O,若AB=BC=CA=3,且四面體ABCD的體積的最大值為3
3
,則球O的表面積為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=x2ex-1-
1
3
x3-x2(x∈R),
(1)求函數(shù)y=f(x)的單調(diào)區(qū)間;
(2)求y=f(x)在[1,2]上的最小值;
(3)當(dāng)x∈(1,+∞)時,用數(shù)學(xué)歸納法證明:?n∈N*,ex-1
xn
n!

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|-3≤x<4},B={x|-2≤x≤5},則A∩B=( 。
A、{x|-3≤x≤5}
B、{x|-3≤x<4}
C、{x|-2≤x≤5}
D、{x|-2≤x<4}

查看答案和解析>>

同步練習(xí)冊答案