已知四棱錐P-ABCD的底面為直角梯形,AB∥DC,∠DAB=90°,PA⊥底面ABCD,且PA=AD=DC=1,AB=2,M是PB的中點(diǎn).
(Ⅰ)證明:面PAD⊥面PCD;
(Ⅱ)求平面AMC與平面ABC夾角的余弦值.
分析:(I)以A為坐標(biāo)原點(diǎn)AD長為單位長度,建立空間直角坐標(biāo)系,證明DC⊥面PAD,可得面PAD⊥面PCD;
(Ⅱ)求出平面AMC、ABC的法向量,利用向量的夾角公式,即可求平面AMC與平面ABC夾角的余弦值.
解答: 解:以A為坐標(biāo)原點(diǎn)AD長為單位長度,如圖建立空間直角坐標(biāo)系,則各點(diǎn)坐標(biāo)為A(0,0,0),B(0,2,0),C(1,1,0),D(1,0,0),P(0,0,1),M(0,1,
1
2
).
(Ⅰ)證明:因?yàn)?span id="dvjxjvh" class="MathJye">
AP
=(0,0,1),
DC
=(0,1,0),
所以
AP
DC
=0,所以AP⊥DC.
由題設(shè)知AD⊥DC,且AP與AD是平面PAD內(nèi)的兩條相交直線,
由此得DC⊥面PAD.
又DC在面PCD上,故面PAD⊥面PCD.
(II)解:平面PAC的法向量為
n
=(x,y,z),
AC
=(1,1,0),
MA
=(0,1,
1
2

∴由
n
AC
=0
n
MC
=0
,可得
x+y=0
y+
1
2
z=0

∴可取
n
=(1,-1,2)
∵平面ABC的法向量
AP
=(0,0,1)
∴cos<
n
,
AP
>=
n
AP
|
n
|
AP
|
=
6
3

∴平面AMC與平面ABC夾角的余弦值為
6
3
點(diǎn)評:本題考查面面垂直,面面角,考查向量知識(shí)的運(yùn)用,考查學(xué)生的計(jì)算能力,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知四棱錐P--ABC的底面ABCD為正方形,PA⊥平面ABCD,PA=AB=2,e為PC的中點(diǎn),F(xiàn)為AD的中點(diǎn).
(Ⅰ)證明EF∥平面PAB;
(Ⅱ)證明EF⊥平面PBC;
(III)點(diǎn)M是四邊形ABCD內(nèi)的一動(dòng)點(diǎn),PM與平面ABCD所成的角始終為45°,求動(dòng)直線PM所形成的曲面與平面ABCD、平面PAB、平面PAD所圍成幾何體的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知四棱錐P-ABCD的底面是直角梯形,∠ABC=∠BCD=90°,AB=BC=2CD=2,PB=PC,側(cè)面PBC⊥底面ABCD,O是BC的中點(diǎn).
(1)求證:PO⊥平面ABCD;
(2)求證:PA⊥BD
(3)若二面角D-PA-O的余弦值為
10
5
,求PB的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知四棱錐P-ABCD的底面是直角梯形,∠ABC=∠BCD=90°,E為BC中點(diǎn),AE與BD交于O點(diǎn),AB=BC=2CD=2,BD⊥PE.
(1)求證:平面PAE⊥平面ABCD; 
(2)若直線PA與平面ABCD所成角的正切值為
5
2
,PO=2,求四棱錐P-ABCD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知四棱錐P-ABCD中,PA⊥平面ABCD,底面ABCD是直角梯形,∠DAB=∠ABC=90°,E是線段PC上一點(diǎn),PC⊥平面BDE.
(Ⅰ)求證:BD⊥平面PAB.
(Ⅱ)若PA=4,AB=2,BC=1,求直線AC與平面PCD所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年山東省濟(jì)寧一中高三(上)期末數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

如圖,已知四棱錐P--ABC的底面ABCD為正方形,PA⊥平面ABCD,PA=AB=2,e為PC的中點(diǎn),F(xiàn)為AD的中點(diǎn).
(Ⅰ)證明EF∥平面PAB;
(Ⅱ)證明EF⊥平面PBC;
(III)點(diǎn)M是四邊形ABCD內(nèi)的一動(dòng)點(diǎn),PM與平面ABCD所成的角始終為45°,求動(dòng)直線PM所形成的曲面與平面ABCD、平面PAB、平面PAD所圍成幾何體的體積.

查看答案和解析>>

同步練習(xí)冊答案