A. | f(0)=2 | B. | 函數(shù)f(x)是偶函數(shù) | C. | 函數(shù)f(x)是奇函數(shù) | D. | [f(x)+1][f(x)-1]=f(2x)+1 |
分析 令x=y=0計算f(0),再令y=0進行驗證,即可得出f(0),令x=0判斷函數(shù)的奇偶性,令x=y判斷D選項.
解答 解:令x=y=0,得f2(0)=2f(0),
∴f(0)=0或f(0)=2,
若f(0)=0,令y=0,得f(x)f(0)=2f(x),
∴f(x)=0,與②矛盾.
∴f(0)=2,∴f(x)不是奇函數(shù).故A正確,C錯誤.
令x=0得2f(y)=f(y)+f(-y),
∴f(y)=f(-y),∴f(x)是偶函數(shù).故B正確.
令x=y得f2(x)=f(2x)+f(0)=f(2x)+2,
∴[f(x)+1][f(x)-1]=f2(x)-1=f(2x)+2-1=f(2x)+1,故D正確.
故選C.
點評 本題考查了抽象函數(shù)的性質(zhì),理解x,y的任意性是解題的關鍵,屬于中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | f(x)=x2(x≥1) | B. | f(x)=x2-1(x≥0) | C. | f(x)=x2-1(x≥1) | D. | f(x)=x2(x≥0) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
x | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
y | 66 | 69 | 73 | 81 | 89 | 90 | 91 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com