不等式|x-2|>x-2的解集是


  1. A.
    (-∞,2)
  2. B.
    (-∞,+∞)
  3. C.
    (2,+∞)
  4. D.
    (-∞,2)∪(2,+∞)
A
分析:方法一:特殊值法,把x=1代入不等式檢驗,把x=3代入不等式檢驗.
方法二:利用一個數(shù)的絕對值大于它本身,這個數(shù)一定是負數(shù).
解答:方法一:特殊值法,把x=1代入不等式檢驗,滿足不等式,故x=1在解集內(nèi),排除答案C、D.
把x=3代入不等式檢驗,不滿足不等式,故 x=3 不在解集內(nèi),排除答案B,故答案選A.
方法二:∵不等式|x-2|>x-2,∴x-2<0,即 x<2
∴解集為(-∞,2),
故選答案 A
點評:對于含絕對值不等式主要是去掉絕對值后再求解,可以通過絕對值的意義、零點分區(qū)間法、平方等方法去掉絕對值.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

設(shè)[x]表示不超過x的最大整數(shù),則關(guān)于x的不等式[x]2-3[x]-10≤0的解集是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

不等式(2-x)(x+3)<0的解集為(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f1(x)=3|x-p1|,f2(x)=2•3|x-p2|(p1,p2為實數(shù)),函數(shù)f(x)定義為:對于每個給定的x,f(x)=
f1(x) ,f1(x)≤f2(x)
f2(x) ,f1(x)>f2(x)

(1)討論函數(shù)f1(x)的奇偶性;
(2)解不等式:f2(x)≥6;
(3)若f(x)=f1(x)對任意實數(shù)x都成立,求p1,p2滿足的條件.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)[x]表示不超過x的最大整數(shù),則x的不等式[x]2-5[x]-36≤0的解集是
{x|-4≤x<10}
{x|-4≤x<10}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)[x]表示不超過x的最大整數(shù)(例如:[5.5]=5,[一5.5]=-6),則不等式[x]2-5[x]+6≤0的解集為( 。

查看答案和解析>>

同步練習冊答案