1.某幾何體的三視圖如圖所示,則下列數(shù)據(jù)中不是該幾何體的棱長的是(  )
A.2$\sqrt{2}$B.$\sqrt{17}$C.3$\sqrt{2}$D.$\sqrt{33}$

分析 由幾何體的三視圖知該幾何體是三棱錐,分別計(jì)算各棱的長,即可得到答案.

解答 解:由三視圖可知,該幾何體是高為4,底面的斜邊為4的等腰直角三角形的三棱錐,
計(jì)算可得3$\sqrt{2}$不是該幾何體的棱長,
故選:C.

點(diǎn)評 本題考查由三視圖求幾何體的體積,關(guān)鍵是對幾何體正確還原,根據(jù)三視圖的長度求出幾何體的幾何元素的長度,再代入對應(yīng)的公式進(jìn)行求解,考查了空間想象能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.函數(shù)f(x)在定義域R內(nèi)可導(dǎo)且關(guān)于x=1對稱,當(dāng)x∈(-∞,1)時,(x-1)f′(x)<0,設(shè)a=f(0),b=f(-3),c=f(3),則( 。
A.a<b<cB.c<a<bC.c<b<aD.b<c<a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已數(shù)列{an}滿足a1=1,a2=3,an+2=(1+2|cos$\frac{nπ}{2}$|)an+|sin$\frac{nπ}{2}$|,n∈N*
(1)證明:數(shù)列:{a2k}{k∈N*}為等比數(shù)列;
(2)求數(shù)列{an}的通項(xiàng)公式;
(3)bn=$\frac{1}{{a}_{2n}}$+(-1)n-1•($\frac{1}{4}$)${\;}^{{a}_{2n-1}}$,求{bn}的前n項(xiàng)和為Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.設(shè)A={x|x2-2x+a≥1},B=[a,a+1],若B∩A=∅,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知集合A={x|a≤x≤a+3},B={x|x<-4或x>5}.若A⊆B,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.若數(shù)對(a,b)(a>1,b>1,a,b∈N*),對于?m∈Z,?x,y∈Z,使m=xa+yb成立,則稱數(shù)對(a,b)為全體整數(shù)的一個基底,(x,y)稱為m以(a,b)為基底的坐標(biāo);
(Ⅰ)給出以下六組數(shù)對(2,3),(2,5),(2,6),(3,5),(3,12),(9,17),寫出可以作為全體整數(shù)基底的數(shù)對;
(Ⅱ)若(a,b)是全體整數(shù)的一個基底,對于?m∈Z,m以(a,b)為基底的坐標(biāo)(x,y)有多少個?并說明理由;
(Ⅲ)若(2,m)是全體整數(shù)的一個基底,試寫出m的所有值,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.設(shè)拋物線C1:y2=4x的準(zhǔn)線與x軸交于點(diǎn)F1,焦點(diǎn)為F2,橢圓C2以F1,F(xiàn)2為焦點(diǎn)且橢圓C2上的點(diǎn)到F1的距離的最大值為3.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)直線l經(jīng)過橢圓C2的右焦點(diǎn)F2,與拋物線C1交于A1、A2兩點(diǎn),與橢圓C2交于B1、B2兩點(diǎn),當(dāng)以B1B2為直徑的圓經(jīng)過F1時,求|A1A2|的長;
(3)若M是橢圓上的動點(diǎn),以M為圓心,MF2為半徑作⊙M是否存在定圓⊙N,使得⊙M與⊙N恒相切,若存在,求出⊙N的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知圓C:(x+$\sqrt{3}$)2+y2=16,點(diǎn)D($\sqrt{3}$,0),Q是圓上一動點(diǎn),DQ的垂直平分線交CQ于點(diǎn)M,設(shè)點(diǎn)M的軌跡為E.
(1)求E的方程;
(2)過點(diǎn)P(1,0)的直線l交軌跡E于兩個不同的點(diǎn)A,B,△AOB(O是坐標(biāo)原點(diǎn))的面積S∈($\frac{3}{5}$,$\frac{4}{5}$),若弦AB的中點(diǎn)為R.求直線OR斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知銳角△ABC中內(nèi)角A、B、C所對邊的邊長分別為a、b、c,滿足a2+b2=6abcosC,且sin2C=2$\sqrt{3}$sinAsinB,角C=$\frac{π}{6}$.

查看答案和解析>>

同步練習(xí)冊答案