分析 (Ⅰ)有已知可得其中一個(gè)交點(diǎn)是原點(diǎn),把另一個(gè)交點(diǎn)表示出來(lái),再利用定積分把面積表示處理即可;
(Ⅱ)結(jié)合(I)利用導(dǎo)數(shù)求解.
解答 解:(Ⅰ)由y=ax2+bx通過(guò)點(diǎn)(1,2)可得a+b=2
即b=2-a,由$\left\{\begin{array}{l}y=a{x^2}+bx\\ y=-{x^2}+2x\end{array}\right.$,解得${x_1}=\frac{a}{1+a}$
則y=ax2+bx與y=-x2+2x所圍成的面積S與a的函數(shù)關(guān)系為$S=\int_0^{x_1}{[{(a{x^2}+bx)-(-{x^2}+2x)}]}dx=-\frac{a^3}{{6{{(1+a)}^2}}}$
(Ⅱ)由$S=-\frac{a^3}{{6{{(1+a)}^2}}}$,得$S'=-\frac{1}{6}•\frac{{{a^2}(a+1)(a+3)}}{{{{(1+a)}^4}}}$,
由S'=0得a=-3,a=-1,
當(dāng)a=-1時(shí),兩曲線只有一個(gè)交點(diǎn),不合題意.
當(dāng)a<-3,S'<0,當(dāng)a>-3S'>0,
所以當(dāng)a=-3時(shí),S取得極小值,即最小值,此時(shí)b=2-a=5,${S_{min}}=\frac{9}{8}$.
點(diǎn)評(píng) 本題主要考查二次函數(shù)以及定積分,導(dǎo)數(shù)的應(yīng)用,屬于中等題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (-1,$\frac{1}{e}$) | B. | (0,$\frac{1}{e+1}$] | C. | (0,$\frac{1}{e}$] | D. | (0,1) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 3 | B. | -3 | C. | $\frac{1}{3}$ | D. | $-\frac{1}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 0個(gè) | B. | 1個(gè) | C. | 2個(gè) | D. | 3個(gè) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | “p∨q”為假 | B. | “p∧q”為真 | C. | p真q假 | D. | p假q真 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com