已知點P是圓上任意一點,點F2與點F1關(guān)于原點對稱.線段PF2的中垂線m分別與PF1、PF2交于M、N兩點.
(1)求點M的軌跡C的方程;
(2)斜率為k的直線l與曲線C交于P,Q兩點,若(O為坐標原點),試求直線l在y軸上截距的取值范圍.
【答案】分析:(1)由題意判斷點M的軌跡是以F1,F(xiàn)2為焦點的橢圓,進而可求點M的軌跡C的方程;
(2)設(shè)直線l的方程為y=kx+n,代入橢圓方程,利用△>0及韋達定理,,即可求得直線l在y軸上截距的取值范圍.
解答:解:(1)由題意得,F(xiàn)1(-1,0),F(xiàn)2(1,0),圓F1的半徑為,且|MF2|=|MP|…(1分)
從而
(3分)
∴點M的軌跡是以F1,F(xiàn)2為焦點的橢圓,…(5分)
其中長軸,得到,焦距2c=2,∴短半軸b=1
∴橢圓方程為:
(6分)
(2)設(shè)直線l的方程為y=kx+n,由,消元可得(2k2+1)x2+4knx+2n2-2=0
則△=16k2n2-8(n2-1)(2k2+1)>0,即2k2-n2+1>0①…(8分)
設(shè)P(x1,y1),Q(x2,y2),則
可得x1x2+y1y2=0,即x1x2+(kx1+n)(kx2+n)=0…(10分)
整理可得
(12分)

化簡可得3n2=2k2+2,代入①整理可得,
故直線l在y軸上截距的取值范圍是.    …(14分)
點評:本題考查橢圓的定義,考查橢圓的標準方程,考查直線與橢圓的位置關(guān)系,解題的關(guān)鍵是利用橢圓的定義,聯(lián)立直線與橢圓方程,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知點P是圓M:x2+(y+m)2=8(m>0,m≠
2
)上一動點,點N(0,m)是圓M所在平面內(nèi)一定點,線段NP的垂直平分線l與直線MP相交于點Q.
(Ⅰ)當P在圓M上運動時,記動點Q的軌跡為曲線Γ,判斷曲線Γ為何種曲線,并求出它的標準方程;
(Ⅱ)過原點斜率為k的直線交曲線Γ于A,B兩點,其中A在第一象限,且它在y軸上的射影為點C,直線BC交曲線Γ于另一點D,記直線AD的斜率為k′.是否存在m,使得對任意的k>0,都有|k•k′|=1?若存在,求m的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓O的半徑為定長r,A是圓所在平面內(nèi)一定點,P是圓上任意一點,線段AP的垂直平分線l與直線OP相交于點Q,當P在圓上運動時,點Q的軌跡可能是下列圖形中的:
①③⑤⑦
①③⑤⑦
.(填寫所有可能圖形的序號)
①點;②直線;③圓;④拋物線;⑤橢圓;⑥雙曲線;⑦雙曲線的一支.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012屆山東省兗州市高二下學(xué)期期末考試數(shù)學(xué)(文) 題型:選擇題

已知圓O的半徑為定長r,是圓O外一定點,P是圓上任意一點,線段的垂直平分線和直線相較于點,當點在圓上運動時,點的軌跡是(    )

A.圓          B.橢圓           C.雙曲線一支        D.拋物線

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年湖北省武漢外國語學(xué)校高二(上)期中數(shù)學(xué)試卷(理科)(解析版) 題型:填空題

已知圓O的半徑為定長r,A是圓所在平面內(nèi)一定點,P是圓上任意一點,線段AP的垂直平分線l與直線OP相交于點Q,當P在圓上運動時,點Q的軌跡可能是下列圖形中的:    .(填寫所有可能圖形的序號)
①點;②直線;③圓;④拋物線;⑤橢圓;⑥雙曲線;⑦雙曲線的一支.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年安徽省安慶市樅陽三中高二(上)第二次段考數(shù)學(xué)試卷(解析版) 題型:填空題

已知圓O的半徑為定長r,A是圓所在平面內(nèi)一定點,P是圓上任意一點,線段AP的垂直平分線l與直線OP相交于點Q,當P在圓上運動時,點Q的軌跡可能是下列圖形中的:    .(填寫所有可能圖形的序號)
①點;②直線;③圓;④拋物線;⑤橢圓;⑥雙曲線;⑦雙曲線的一支.

查看答案和解析>>

同步練習(xí)冊答案