已知向量
a
=(2,1),
b
=(sinα,cosα),且
a
b
,則tanα=( 。
A、2
B、-2
C、
1
2
D、-
1
2
考點:平面向量共線(平行)的坐標表示
專題:平面向量及應用
分析:直接由向量共線的坐標表示列式,然后由同角三角函數(shù)的基本關系得答案.
解答: 解:∵
a
=(2,1),
b
=(sinα,cosα),且
a
b

∴2cosα-sinα=0,
即tanα=2.
故選:A.
點評:平行問題是一個重要的知識點,在高考題中常常出現(xiàn),常與向量的模、向量的坐標表示等聯(lián)系在一起,要特別注意垂直與平行的區(qū)別.若
a
=(a1,a2),
b
=(b1,b2),則
a
b
?a1a2+b1b2=0,
a
b
?a1b2-a2b1=0,是基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}滿足a1=3,an+1=
an-1
an+1
(n∈N*),Tn為數(shù)列{an}的前n項之積,則T2010=( 。
A、
3
2
B、-
1
6
C、
2
3
D、-6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=2cos2
1
2
(ωx+φ)-2
3
sin
1
2
(ωx+φ)cos
1
2
(ωx+φ)(ω>0.0<φ<
π
2
)其圖象的兩個相鄰對稱中心的距離為
π
2
,且過點(-
π
6
,2).
(Ⅰ)函數(shù)f(x)的達式;
(Ⅱ)若f(
α
2
-
π
6
)=
1
2
,α是第三象限角,求cosα的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知命題p:關于x的不等式x2+(2a-1)x+a2≤0的解集為∅;命題q:2a2-a>1.若p∨q為真,p∧q為假,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=ax+
a-1
x
+1-2a(a≥
1
2
).
(Ⅰ)當a=2時,求函數(shù)y=f(x)在點(1,f(1))處的切線;
(Ⅱ)證明:f(x)≥lnx在[1,+∞)上恒成立;
(Ⅲ)證明:1+
1
2
+
1
3
+…+
1
n
>ln(n+1)+
n
2(n+1)
(n∈N*).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知定義在R上的偶函數(shù)f(x)滿足f(x-1)=f(x+1),當0≤x≤1時,f(x)=x2,如果函數(shù)g(x)=f(x)-(x+m)有兩個零點,則實數(shù)m的值為( 。
A、2k(k∈Z)
B、2k-
1
4
(k∈Z)
C、2K或2K+
1
4
D、2K或2K-
1
4
(k∈Z)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知兩集合M={x∈R|0≤x≤8},N={y∈R|0≤y≤5}.下列的對應關系中,是M到N的映射的是( 。
A、f:x→y=2
x
B、f:x→y=
2
3
x
C、f:x→y=2x-1
D、f:x→y=
3x

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在三棱錐S-ABC中,SA⊥底面ABC,BC⊥AC,且AC=1,BC=
2
,又D是棱SC上一點,AD+DB的最小值為
5
,則三棱錐S-ABC的外接球的體積為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知全集U=R,集合A={y|y=lg(x2+10),x∈R),集合B={x||x-2|<1},則(∁UB)∩A=(  )
A、{x|0≤x<1或x>3}
B、{x|x=1或x≥3}
C、{x|x>3}
D、{x|1≤x≤3}

查看答案和解析>>

同步練習冊答案