精英家教網(wǎng)y軸上兩定點B1(0,b)、B2(0,-b),x軸上兩動點M,N.P為B1M與B2N的交點,點M,N的橫坐標分別為XM、XN,且始終滿足XMXN=a2(a>b>0且為常數(shù)),試求動點P的軌跡方程.
分析:先設(shè)P(x,y),M(xm,0),N(xn,0),由M,P,B1三點共線,得出它們的坐標之間的關(guān)系,再結(jié)合題中條件:“XMXN=a2”得到關(guān)于x,y的關(guān)系式即為點P軌跡方程.
解答:解:設(shè)P(x,y),M(xm,0),N(xn,0)(2分)
由M,P,B1三點共線,知
y-b
x-0
=
0-b
xm-0
(4分)
所以xm=
bx
b-y
(6分)
同理得xn=
bx
b+y
(9分)xm•xn=
b2x2
b2-y2
=a2
(10分)
故點P軌跡方程為
x2
a2
+
y2
b2
=1
(12分)
點評:求曲線的軌跡方程是解析幾何的基本問題   求符合某種條件的動點的軌跡方程,其實質(zhì)就是利用題設(shè)中的幾何條件,用“坐標化”將其轉(zhuǎn)化為尋求變量間的關(guān)系.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:2007-2008學年福建省泉州一中高二(上)期中數(shù)學試卷(理科)(解析版) 題型:解答題

y軸上兩定點B1(0,b)、B2(0,-b),x軸上兩動點M,N.P為B1M與B2N的交點,點M,N的橫坐標分別為XM、XN,且始終滿足XMXN=a2(a>b>0且為常數(shù)),試求動點P的軌跡方程.

查看答案和解析>>

同步練習冊答案