已知x,y∈(-
1
2
1
2
),m∈R且m≠0,若
ln
2-x
2+x
=tanx+2m
ln
1-y
1+y
=
2tany
1-tan2y
-2m
,則
y
x
=
 
考點(diǎn):對數(shù)的運(yùn)算性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)條件構(gòu)造函數(shù)f(x)=ln
2-x
2+x
-tanx
,利用函數(shù)的奇偶性,即可的結(jié)論.
解答: 解:由lnln
1-y
1+y
=
2tany
1-tan2y
-2m
得:
ln
2-2y
2+2y
=tan2y-2m
,
設(shè)f(x)=ln
2-x
2+x
-tanx
,
則f(-x)=ln
2+x
2-x
-tan(-x)
=-(ln
2-x
2+x
-tanx
)=-f(x),則f(x)為奇函數(shù),
則方程組等價(jià)為
f(x)=2m
f(2y)=-2m
,
即f(2y)=-f(x)=f(-x),
則2y=-x,即
y
x
=-
1
2

故答案為:-
1
2
點(diǎn)評:本題主要考查函數(shù)奇偶性的應(yīng)用,利用條件構(gòu)造函數(shù)f(x)=ln
2-x
2+x
-tanx
是解決本題的關(guān)鍵,難度較大.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,∠ACB=60°,∠ABC=θ,AB=6
(1)求△ABC面積的最大值.
(2)若△ABC的周長為6
3
+6,求θ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)直線l:y=g(x),曲線S:y=F(x).若直線l與曲線S同時(shí)滿足下列兩個(gè)條件:①直線l與曲線S相切且至少有兩個(gè)切點(diǎn);②對任意x∈R都有g(shù)(x)≥F(x).則稱直線l為曲線S的“上夾線”.
(1)曲線y=sinx的“上夾線”方程為
 

(2)曲線S:y=mx-nsinx(n>0)的“上夾線”的方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在極坐標(biāo)系中,曲線C1:ρ(cosθ+sinθ)=1與曲線C2:ρ=a(a>0)的一個(gè)交點(diǎn)在極軸上,則a=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{an}的通項(xiàng)為an=(-1)n(2n-1)•cos
2
+1前n項(xiàng)和為Sn,則S60=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)f(x)=x2-ax+a(x∈R)同時(shí)滿足:
①不等式f(x)≤0的解集有且只有一個(gè)元素;
②在定義域內(nèi)存在0<x1<x2,使得不等式f(x1)>f(x2)成立.
設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,且Sn=f(n).規(guī)定:在各項(xiàng)均不為零的數(shù)列{bn}中,所有滿足k•bk+1<0的正整數(shù)k的個(gè)數(shù)稱為這個(gè)數(shù)列{bn}的變號數(shù).若令bn=1-
a
an
(n∈N*)則:(。゜2=
 
;(ⅱ)數(shù)列{bn}的變號數(shù)為:
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)極點(diǎn)與坐標(biāo)原點(diǎn)重合,極軸與x軸正半軸重合,已知直線l的極坐標(biāo)方程是:ρcosθ=a(a∈R),圓C的參數(shù)方程是
x=-1+cosθ
y=sinθ
(θ為參數(shù)),若圓C關(guān)于直線l對稱,則a=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

直線l:x=a與圓x2+y2=4和拋物線y2=3
3
x分別相交于A、B和C、D點(diǎn),若|CD|=3|AB|,則a的值為( 。
A、-
4
3
3
B、
3
C、
2
D、
3
或-
4
3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=f(x)的定義域?yàn)锳,若常數(shù)C滿足:對任意正實(shí)數(shù)?,總存在x∈A,使得0<|f(x)-C|<?成立,則稱C為函數(shù)y=f(x)的“漸近值”.現(xiàn)有下列三個(gè)函數(shù):①f(x)=
x
x-1
;②f(x)=
1,x為有理數(shù)
0,x為無理數(shù)
;③f(x)=
sinx
x
.其中以數(shù)“1”為漸近值的函數(shù)個(gè)數(shù)為( 。
A、0B、1C、2D、3

查看答案和解析>>

同步練習(xí)冊答案