19.若sinx=-$\frac{3}{5}(π<x<\frac{3}{2}π)$,則x=( 。
A.$arcsin(-\frac{3}{5})$B.$π+arcsin\frac{3}{5}$C.$2π-arcsin\frac{3}{5}$D.$π-arcsin\frac{3}{5}$

分析 利用反正弦函數(shù)的定義,由0<x-π<$\frac{π}{2}$,sin(x-π)=-sinx=$\frac{3}{5}$,可得到答案.

解答 解:∵$π<x<\frac{3}{2}π$,
∴0<x-π<$\frac{π}{2}$,
∵sin(x-π)=-sinx=$\frac{3}{5}$
根據(jù)反正弦函數(shù)的定義可得x-π=arcsin$\frac{3}{5}$,
∴x=π+arcsin$\frac{3}{5}$,
故選:B.

點評 本題的考點是反三角函數(shù)的運(yùn)用,主要考查反正弦函數(shù)的定義,應(yīng)特別主要角的范圍.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知向量$\overrightarrow{a}$,$\overrightarrow b$,則“$\overrightarrow a$∥$\overrightarrow b$”是“|$\overrightarrow a$-$\overrightarrow b$|=|$\overrightarrow a$|-|$\overrightarrow b$|”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.設(shè)$a=\int_0^π{sinx}dx$,則二項式${({ax-\frac{1}{x}})^6}$的展開式中的常數(shù)項是-160.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知集合A={x|x2-2x-3≤0,x∈R},B={x|x2-2mx-4≤0,x∈R}.
(1)若A∩B={x|1≤x≤3},求實數(shù)m的值;
(2)若A⊆∁RB,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.“a>1”是“函數(shù)f(x)=a•x+cosx在R上單調(diào)遞增”的充分不必要條件條件.(空格處請?zhí)顚憽俺浞植槐匾獥l件”、“必要不充分條件”、“充要條件”或“既不充分也不必要條件”)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=x-eax(a>0)(e是自然對數(shù)的底數(shù)),
(1)求函數(shù)y=f(x)的極值;
(2)若存在x1,x2(x1<x2),使得f(x1)=f(x2)=0,證明:$\frac{x_1}{x_2}<ae$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.“sin2α=$\frac{1}{2}$”是“α=kπ+$\frac{5}{12}$π,k∈Z”的(  )
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分又不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.設(shè)a∈R,函數(shù)$f(x)=\frac{1}{3}{x^3}-\frac{1}{2}(2a+1){x^2}+bx+d$的圖象如圖.
(1)已知f′(x)是f(x)的導(dǎo)函數(shù),且$g(x)=\frac{f'(x)}{x}(x≠0)$為奇函數(shù),求a的值;
(2)若函數(shù)f(x)在x=2處取得極小值,求函數(shù)f(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.在等差數(shù)列{an}中,a5+a10=58,a4+a9=50,則它的前10項和為210.

查看答案和解析>>

同步練習(xí)冊答案