精英家教網 > 高中數學 > 題目詳情

若對正常數m和任意實數x,等式成立,則下列說法正確的是

[  ]

A.函數f(x)是周期函數,最小正周期為2 m

B.函數f(x)是奇函數,但不是周期函數

C.函數f(x)是周期函數,最小正周期為4 m

D.函數f(x)是偶函數,但不是周期函數

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

設數列{an}前n項和為Sn,且(3-m)Sn+2man=m+3(n∈N*).其中m為實常數,m≠-3且m≠0.
(1)求證:{an}是等比數列;
(2)若數列{an}的公比滿足q=f(m)且b1=a1,bn=
3
2
f(bn-1)(n∈N*,n≥2)
,求{bn}的通項公式;
(3)若m=1時,設Tn=a1+2a2+3a3+…+nan(n∈N*),是否存在最大的正整數k,使得對任意n∈N*均有Tn
k
8
成立,若存在求出k的值,若不存在請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

A已知數列{an}是首項為a1=
1
4
,公比q=
1
4
的等比數列,設bn+2=3log
1
4
an  (n∈N*)
,數列{cn}滿足cn=an•bn
(1)求證:{bn}是等差數列;
(2)求數列{cn}的前n項和Sn
(3)若cn
1
4
m2+m-1
對一切正整數n恒成立,求實數m的取值范圍.
B已知數列{an}和{bn}滿足:a1=λ,an+1=
2
3
an+n-4
,bn=(-1)n(an-3n+21),其中λ為實數,n為正整數.
(Ⅰ)對任意實數λ,證明:數列{an}不是等比數列;
(Ⅱ)證明:當λ≠-18時,數列{bn}是等比數列;
(Ⅲ)設0<a<b(a,b為實常數),Sn為數列{bn}的前n項和.是否存在實數λ,使得對任意正整數n,都有a<Sn<b?若存在,求λ的取值范圍;若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

A已知數列{an}是首項為數學公式,公比q=數學公式的等比數列,設數學公式數學公式,數列{cn}滿足cn=an•bn

(1)求證:{bn}是等差數列;
(2)求數列{cn}的前n項和Sn;
(3)若數學公式對一切正整數n恒成立,求實數m的取值范圍.
B已知數列{an}和{bn}滿足:a1=λ,數學公式,數學公式,其中λ為實數,n為正整數.
(Ⅰ)對任意實數λ,證明:數列{an}不是等比數列;
(Ⅱ)證明:當λ≠-18時,數列{bn}是等比數列;
(Ⅲ)設0<a<b(a,b為實常數),Sn為數列{bn}的前n項和.是否存在實數λ,使得對任意正整數n,都有a<Sn<b?若存在,求λ的取值范圍;若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源:2011-2012學年安徽省六安市舒城中學高三(上)期中數學試卷(理科)(解析版) 題型:解答題

A已知數列{an}是首項為,公比q=的等比數列,設,數列{cn}滿足cn=an•bn
(1)求證:{bn}是等差數列;
(2)求數列{cn}的前n項和Sn;
(3)若對一切正整數n恒成立,求實數m的取值范圍.
B已知數列{an}和{bn}滿足:a1=λ,,,其中λ為實數,n為正整數.
(Ⅰ)對任意實數λ,證明:數列{an}不是等比數列;
(Ⅱ)證明:當λ≠-18時,數列{bn}是等比數列;
(Ⅲ)設0<a<b(a,b為實常數),Sn為數列{bn}的前n項和.是否存在實數λ,使得對任意正整數n,都有a<Sn<b?若存在,求λ的取值范圍;若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源:2008-2009學年重慶一中高三(上)10月月考數學試卷(理科)(解析版) 題型:解答題

設數列{an}前n項和為Sn,且(3-m)Sn+2man=m+3(n∈N*).其中m為實常數,m≠-3且m≠0.
(1)求證:{an}是等比數列;
(2)若數列{an}的公比滿足q=f(m)且,求{bn}的通項公式;
(3)若m=1時,設Tn=a1+2a2+3a3+…+nan(n∈N*),是否存在最大的正整數k,使得對任意n∈N*均有成立,若存在求出k的值,若不存在請說明理由.

查看答案和解析>>

同步練習冊答案