精英家教網 > 高中數學 > 題目詳情
若橢圓經過原點,且焦點分別為 則該橢圓的短軸長為(    )
A.B.C.D.
B

試題分析:由橢圓焦點為可知.中心為,則可設橢圓方程為,又,圖像過點,代入可得,
那么橢圓的短軸長為.
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

在平面直角坐標系中,已知點,圓是以為圓心,半徑為的圓,點是圓上任意一點,線段的垂直平分線和半徑所在的直線交于點.
(1)當點在圓上運動時,求點的軌跡方程;
(2)已知,是曲線上的兩點,若曲線上存在點,滿足為坐標原點),求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

給定橢圓,稱圓心在原點,半徑為的圓是橢圓的“準圓”.若橢圓的一個焦點為,其短軸上的一個端點到的距離為.

(1)求橢圓的方程和其“準圓”方程;
(2)點是橢圓的“準圓”上的動點,過點作橢圓的切線交“準圓”于點.
(ⅰ)當點為“準圓”與軸正半軸的交點時,求直線的方程,
并證明;
(ⅱ)求證:線段的長為定值.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

直線與橢圓相交于、兩點,過點軸的垂線,垂足恰好是橢圓的一個焦點,則橢圓的離心率是          

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

已知橢圓C:的左焦點為F,C與過原點的直線相交于A,B兩點,連接AF,BF,若,則C的離心率e=        

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

已知中心在原點、焦點在x軸上的橢圓C1與雙曲線C2有共同的焦點,設左右焦點分別為F1,F2,P是C1與C2在第一象限的交點,PF1F2是以PF1為底邊的等腰三角形,若橢圓與雙曲線的離心率分別為e1,e2,則e1·e2的取值范圍是(    )
A.(,+) B.(,+) C.(,+)D.(0,+)

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

已知橢圓與圓,若在橢圓上存在點P,使得由點P所作的圓的兩條切線互相垂直,則橢圓的離心率的取值范圍是(    )
A.B.C.D.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

如圖,,是雙曲線與橢圓的公共焦點,點在第一象限的公共點.若|F1F2|=|F1A|,則的離心率是(    ).
A.B.C.D.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

已知橢圓的方程C:),若橢圓的離心率,則的取值范圍是.

查看答案和解析>>

同步練習冊答案