7.如圖,邊長為2的正方形ABCD中,BE=BF=$\frac{1}{4}$BC,將△AED,△DCF分別沿DE,DF折起,使A,C兩點重合于A′點,則三棱錐A′-EFD的體積為( 。
A.$\frac{{\sqrt{21}}}{12}$B.$\frac{{\sqrt{17}}}{12}$C.$\frac{{\sqrt{21}}}{6}$D.$\frac{{\sqrt{17}}}{6}$

分析 由A′D⊥A′E,A′D⊥A′F得A′D⊥平面A′EF,故而VA′-EFD=VD-A′EF=$\frac{1}{3}{S}_{△A′EF}•A′D$,利用余弦定理求出∠EA′F,即可得出S△A′EF,從而得出三棱錐的體積.

解答 解:∵∠EA′D=∠FA′D=90°,
∴A′D⊥A′E,A′D⊥A′F,
又A′E?平面A′EF,A′F?平面A′EF,A′E∩A′F=A′,
∴A′D⊥平面A′EF,
∵A′E=A′F=$\frac{3}{2}$,BE=BF=$\frac{1}{2}$,BE⊥BF,
∴EF=$\frac{\sqrt{2}}{2}$,∴cos∠EA′F=$\frac{A′{E}^{2}+A′{F}^{2}-E{F}^{2}}{2A′E•A′F}$=$\frac{8}{9}$,
∴sin∠EA′F=$\sqrt{1-co{s}^{2}∠EA′F}$=$\frac{\sqrt{17}}{9}$,
∴S△A′EF=$\frac{1}{2}$A′E•A′F•sin∠EA′F=$\frac{1}{2}×\frac{3}{2}×\frac{3}{2}×\frac{\sqrt{17}}{9}$=$\frac{\sqrt{17}}{8}$,
∴VA′-EFD=VD-A′EF=$\frac{1}{3}{S}_{△A′EF}•A′D$=$\frac{1}{3}×\frac{\sqrt{17}}{8}×2$=$\frac{\sqrt{17}}{12}$.
故選:B.

點評 本題考查了余弦定理,棱錐的體積計算,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.設(shè)z=2x+y,其中實數(shù)x,y滿足$\left\{\begin{array}{l}x+2y≥0\\ x-y≤0\\ 0≤y≤3\end{array}\right.$,則z的最小值為(  )
A.-2B.-4C.-9D.-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知“0<t<m(m>0)”是“函數(shù)f(x)=-x2-tx+3t在區(qū)間(0,2)上只有一個零點”的充分不必要條件,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知x,y滿足$\left\{\begin{array}{l}{x+3y-4≤0}\\{3x+y+4≥0}\\{x-y≤0}\end{array}\right.$,若z=$\frac{y}{x+3}$,則z的最大值和最小值為( 。
A.最大值是2,最小值是-$\frac{1}{2}$B.最大值是3,最小值是-$\frac{1}{2}$
C.最大值是2,最小值是-$\frac{1}{3}$D.最大值是3,最小值是-$\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.為了保衛(wèi)我國領(lǐng)海,保衛(wèi)海上資源,我國海軍將艦隊分為甲、乙、丙三個編隊,分別在“黃!薄ⅰ皷|!焙汀澳虾!边M(jìn)行巡邏,每個艦隊選擇“黃!、“東海”和“南!边M(jìn)行巡邏的概率分別為$\frac{1}{6}$、$\frac{1}{3}$、$\frac{1}{2}$,現(xiàn)在三個編隊獨立地任意的選擇以上三個海洋的一個進(jìn)行巡邏.
(1)求甲、乙、丙三個編隊所選取的海洋互不相同的概率;
(2)設(shè)巡邏“黃!、“東!焙汀澳虾!泵總編隊需要投入分別為100萬元、100萬元、200萬元,求投入資金ξ的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.一個多面體的三視圖如圖所示,則該多面體的表面積為(  )
A.$\frac{22}{3}$B.21C.21+$\frac{\sqrt{3}}{2}$D.21+$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.某地為了調(diào)查職業(yè)滿意度,決定用分層抽樣的方法從公務(wù)員、教師、自由職業(yè)者三個群體的相關(guān)人員中,抽取若干人組成調(diào)查小組,有關(guān)數(shù)據(jù)見如表:
相關(guān)人員數(shù)抽取人數(shù)
公務(wù)員32x
教師48y
自由職業(yè)者644
則調(diào)查小組的總?cè)藬?shù)為9.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.在直用坐標(biāo)系xOy中,直線l的參數(shù)方程為$\left\{\begin{array}{l}x=3t-3\\ y=4t-9\end{array}\right.$(t為參數(shù)).在以原點O為極點,x軸的正半軸為極軸的極坐標(biāo)系中,圓心A的極坐標(biāo)為(2,$\frac{2π}{3}}$),圓A的半徑為3.
(1)直接寫出直線l的直角坐標(biāo)方程,圓A的極坐標(biāo)方程;
(2)設(shè)B是線l上的點,C是圓A上的點,求|BC|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知在平面直角坐標(biāo)系中,曲線C的參數(shù)方程為:$\left\{\begin{array}{l}x=3cost\\ y=2+2sint\end{array}$(t為參數(shù)),P是C上任意一點,以x軸的非負(fù)半軸為極軸,原點為極點建立極坐標(biāo)系,并在兩坐標(biāo)系中取相同的長度單位.
(Ⅰ)求曲線C的直角坐標(biāo)方程;
(Ⅱ)直線l的極坐標(biāo)方程為θ=$\frac{π}{4}$(ρ∈R),求P到直線l的最大距離.

查看答案和解析>>

同步練習(xí)冊答案