18.如圖(1)E,F(xiàn)分別是AC,AB的中點,∠ACB=90°,∠CAB=30°,沿著EF將△AEF折起,記二面角A-EF-C的度數(shù)為θ.
(Ⅰ)當(dāng)θ=90°時,即得到圖(2)求二面角A-BF-C的余弦值;
(Ⅱ)如圖(3)中,若AB⊥CF,求cosθ的值.

分析 (Ⅰ)推導(dǎo)出AE⊥平面CEFB,過點E向BF作垂線交BF延長線于H,連接AH,則∠AHE為二面角A-BF-C的平面角,由此能求出二面角A-BF-C的余弦值.
(Ⅱ)過點A向CE作垂線,垂足為G,由AB⊥CF,得GB⊥CF,由此能求出cosθ的值.

解答 解:(Ⅰ)∵平面AEF⊥平面CEFB,且EF⊥EC,
∴AE⊥平面CEFB,
過點E向BF作垂線交BF延長線于H,連接AH,
則∠AHE為二面角A-BF-C的平面角
設(shè)$BC=2a,則EF=a,AB=4a,AC=2\sqrt{3}a$,
$AE=\sqrt{3}a$,$EH=\frac{{\sqrt{3}}}{2}a$,
∴$cos∠AHE=\frac{EH}{AH}=\frac{{\frac{{\sqrt{3}}}{2}a}}{{\sqrt{3{a^2}+\frac{3}{4}{a^2}}}}=\frac{{\sqrt{5}}}{5}$,
∴二面角A-BF-C的余弦值為$\frac{\sqrt{5}}{5}$.(7分)
(Ⅱ)過點A向CE作垂線,垂足為G,如果AB⊥CF,
則根據(jù)三垂線定理有GB⊥CF,
∵△BCF為正三角形,∴$CG=BCtan3{0}^{°}=\frac{2\sqrt{3}}{3}a$,則$GE=\frac{{\sqrt{3}}}{3}a$,
∵$AE=\sqrt{3}a$,∴$cosθ=\frac{GE}{AE}=\frac{1}{3}$,
∴cosθ的值為$\frac{1}{3}$.(15分)

點評 本題考查二面角的余弦值的求法,是中檔題,解題時要認(rèn)真審題,注意向量法的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.閱讀如圖所示的程序框圖,運行相應(yīng)程序,則輸出的S=( 。
A.2.$\stackrel{•}{6}$B.3.0$\stackrel{•}{6}$C.4.1$\stackrel{•}{6}$D.4.5$\stackrel{•}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.三棱柱ABC-A1B1C1中,側(cè)棱AA1⊥面ABC,AC1⊥面CBA1,AC1∩A1C=F.
(1)證明:A1C1⊥B1C1
(2)設(shè)A1C1=B1C1=2,E為AB的中點,求E點到FC1B1的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.如圖,已知ABCDEF是正六邊形,GA、ND都垂直于平面ABCDEF,平面FGN交線段DE于點R,點M是CD的中點,AB=DN=1,AG=2.
(1)求證:AM∥平面GFRN;
(2)求二面角A-GF-N的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.一個底面邊長為2的正四棱柱截去一部分得到一個幾何體,該幾何體的三視圖如圖所示,若該幾何體的體積為13,則圖中x的值為( 。
A.2.5B.3C.2D.1.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.如圖,在四棱錐P-ABCD中,側(cè)面PAB⊥底面ABCD,底面ABCD是邊長為2的正方形,PA=PB,E為PC上的點,且BE⊥平面PAC.
(Ⅰ)求證:PA⊥平面PBC
(Ⅱ)求二面角P-AC-B的正弦值;
(Ⅲ)求點D到平面PAC的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.設(shè)函數(shù)f(x)=x-$\frac{1}{x}$,若f(mx)+mf(x)<0對?x∈[1,+∞)恒成立,則實數(shù)m的取值范圍為m<-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知一個幾何體的三視圖如圖所示,則該幾何體的體積為( 。
A.7B.7$\frac{1}{3}$C.7$\frac{2}{3}$D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.由y=$\frac{1}{x}$,x軸及x=1,x=2圍成的圖形的面積為( 。
A.ln2B.lg2C.$\frac{1}{2}$D.1

查看答案和解析>>

同步練習(xí)冊答案