科目:高中數(shù)學 來源: 題型:閱讀理解
OZ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:閱讀理解
(本題14分)閱讀:設Z點的坐標(a, b),r=||,θ是以x軸的非負半軸為始邊、以OZ所在的射線為終邊的角,復數(shù)z=a+bi還可以表示為z=r(cosθ+isinθ),這個表達式叫做復數(shù)z的三角形式,其中,r叫做復數(shù)z的模,當r≠0時,θ叫做復數(shù)z的幅角,復數(shù)0的幅角是任意的,當0≤θ<2π時,θ叫做復數(shù)z的幅角主值,記作argz.
根據(jù)上面所給出的概念,請解決以下問題:
(1)設z=a+bi =r(cosθ+isinθ) (a、bÎR,r≥0),請寫出復數(shù)的三角形式與代數(shù)形式相互之間的轉(zhuǎn)換關系式;
(2)設z1=r1(cosθ1+isinθ1),z2=r2(cosθ2+isinθ2),探索三角形式下的復數(shù)乘法、除法的運算法則,請寫出三角形式下的復數(shù)乘法、除法的運算法則.(結(jié)論不需要證明)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com