分析 (1)求得f(x)的解析式,令H(x)=0,分解因式,對(duì)b討論,求得方程的解,即可得到所求零點(diǎn)的個(gè)數(shù);
(2)由當(dāng)|x|≤1時(shí),|f(x)|≤1恒成立,可知|f(-1)|≤1,|f(0)|≤1,|f(1)|≤1,利用絕對(duì)值不等式的性質(zhì),可得當(dāng)x=0時(shí),|g(x)|取到最大值2,運(yùn)用恒成立思想可得M的最小值為2,此時(shí)a=2,b=0,c=-1.
解答 解:(1)當(dāng)a>0,c=0時(shí),f(x)=ax2+bx,
由H(x)=0,可得f[f(x)]-f(x)=0,
即為a(ax2+bx)2+b(ax2+bx)-(ax2+bx)=0,
即有(ax2+bx)(a2x2+abx+b-1)=0,
即為x(ax+b)(ax+1)(ax+b-1)=0,
當(dāng)b=0時(shí),H(x)=0的解為x=0,或x=-1a,或x=1a;
當(dāng)b=1時(shí),H(x)=0的解為x=0,或x=-1a;
當(dāng)b=2時(shí),H(x)=0的解為x=0,或x=-1a,或x=-2a;
當(dāng)b≠0且b≠1且b≠2,H(x)=0的解為x=0,或x=-1a,或x=1−ba或x=-a.
綜上可得,b=1時(shí),H(x)有2個(gè)零點(diǎn);
b=0或2時(shí),H(x)有3個(gè)零點(diǎn);
b≠0且b≠1且b≠2時(shí),H(x)有4個(gè)零點(diǎn);
(2)由|x|≤1時(shí),|f(x)|≤1恒成立,
可知|f(-1)|≤1,|f(0)|≤1,|f(1)|≤1,
且由 f(-1)=a-b+c,f(0)=c,f(1)=a+b+c,
解得a=f(−1)+f(1)−2f(0)2,b=f(1)−f(−1)2,c=f(0),
可得g(x)=cx2+bx+a=f(0)x2+f(1)−f(−1)2x+f(−1)+f(1)−2f(0)2
=f(0)(x2-1)+12f(1)(1+x)+12f(-1)(1-x),
又x∈[-1,1],x2-1≤0,x+1≥0,1-x≥0,
則|g(x)|=|f(0)(x2-1)+12f(1)(1+x)+12f(-1)(1-x)|
≤|f(0)(x2-1)|+12|f(1)(1+x)|+12|f(-1)(1-x)|
≤|x2-1|+12|1+x|+12|1-x|=1-x2+12(1+x)+12(1-x)
=2-x2≤2.
當(dāng)x=0時(shí),|g(x)|取到最大值2.
即有M≥2,即M的最小值為2,
此時(shí)a=2,b=0,c=-1.
點(diǎn)評(píng) 本題考查函數(shù)的零點(diǎn)問題的解法,注意運(yùn)用分類討論的思想方法,考查不等式恒成立問題的解法,注意運(yùn)用絕對(duì)值不等式的性質(zhì)和轉(zhuǎn)化思想的運(yùn)用,綜合性強(qiáng),難度較大.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | B. | C. | D. |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com