如圖所示,PA⊥平面ABCD,四邊形ABCD為正方形,且2PA=AD,E、F、G、H分別是線段PA、PD、CD、BC的中點(diǎn).
(Ⅰ)求證:BC∥平面EFG;
(Ⅱ)求證:DH⊥平面AEG;
(Ⅲ)求三棱錐E-AFG與四棱錐P-ABCD的體積比.

(Ⅰ)證明:∵BC∥AD,AD∥EF,∴BC∥EF…(2分)
∵BC?平面EFG,EF?平面EFG,
∴BC∥平面EFG…(3分)
(Ⅱ)證明:∵PA⊥平面ABCD,DH?平面ABCD,
∴PA⊥DH,即 AE⊥DH…(5分)
∵△ADG≌△DCH,∴∠HDC=∠DAG,∠AGD+∠DAG=90°
∴∠AGD+∠HDC=90°
∴DH⊥AG
又∵AE∩AG=A,
∴DH⊥平面AEG…(8分)
(Ⅲ)解:====…(12分)
分析:(Ⅰ)利用平行公理證明BC∥EF,再利用線面平行的判定,證明BC∥平面EFG;
(Ⅱ)利用PA⊥平面ABCD,證明AE⊥DH,利用△ADG≌△DCH,證明DH⊥AG,從而可證DH⊥平面AEG;
(Ⅲ),計(jì)算出體積可得結(jié)論.
點(diǎn)評(píng):本題考查線面平行,線面垂直,考查體積的計(jì)算,解題的關(guān)鍵是正確運(yùn)用線面平行、線面垂直的判定,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,PA⊥平面ABCD,底面ABCD為菱形,∠ABC=60°,PA=AB=2,N為PC的中點(diǎn).
(1)求證:BD⊥平面PAC.     
(2)求二面角B-AN-C的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,PA⊥平面ABC,點(diǎn)C在以AB為直徑的⊙O上,∠CBA=30°,PA=AB=2,,點(diǎn)E為線段PB的中點(diǎn),點(diǎn)M在AB弧上,且OM∥AC.
(1)求證:平面MOE∥平面PAC;
(2)求證:BC⊥平面PAC;
(3)求直線PB與平面PAC所成的角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,PA⊥平面ABCD,底面ABCD為直角梯形,AD∥BC,AD⊥AB,PA=
6
,AD=2,BC=
3
2
,∠ADC=60°,O為四棱錐P-ABCD內(nèi)一點(diǎn),AO=1,
若DO與平面PCD成角最小角為α,則α=(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,PA⊥平面ABCD,四邊形ABCD為正方形,且2PA=AD=2,E、F、G分別是線段PA、PD、CD的中點(diǎn).
(Ⅰ)求異面直線EF與AG所成角的余弦值;
(Ⅱ)求證:BC∥面EFG;
(Ⅲ)求三棱錐E-AFG的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖所示,PA⊥平面ABCD,ABCD是邊長(zhǎng)為1的正方形.點(diǎn)F是PB的中點(diǎn),點(diǎn)E在邊BC上移動(dòng).
(1)當(dāng)點(diǎn)E為BC的中點(diǎn)時(shí),試在AB上找一點(diǎn)G,使得平面PAC∥平面EFG.求此時(shí)AG的長(zhǎng)度;
(2)證明:無(wú)論點(diǎn)E在邊BC的何處,都有PE⊥AF.

查看答案和解析>>

同步練習(xí)冊(cè)答案