19.已知集合M={-3,-2,-1,0,1,2},N={x∈R|(x-1)(x+2)>0},則M∩N=( 。
A.{-3,2}B.{-1,0,1}C.{-3,-2,-1,0,1,2}D.

分析 求出N中不等式的解集確定出N,找出M與N的交集即可.

解答 解:由N中不等式解得:x<-2或x>1,即N={x|x<-2或x>1},
∵M(jìn)={-3,-2,-1,0,1,2},
∴M∩N={-3,2},
故選:A.

點(diǎn)評 此題考查了交集及其運(yùn)算,熟練掌握交集的定義是解本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.在△ABC 中,點(diǎn)D在直線AC上,且$\overrightarrow{AD}$=$\frac{2}{3}$$\overrightarrow{AC}$,點(diǎn)E在直線BD上,且$\overrightarrow{BD}$=2$\overrightarrow{DE}$,若$\overrightarrow{AE}$=λ1$\overrightarrow{AB}$+λ2$\overrightarrow{AC}$,則λ12=( 。
A.0B.$\frac{1}{2}$C.$\frac{7}{9}$D.$\frac{8}{9}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.設(shè)a=log3π,b=log${\;}_{\frac{1}{3}}$π,c=π-3,則( 。
A.a>b>cB.b>a>cC.a>c>bD.c>b>a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知$f(x)={(\frac{1}{2})^x}-{log_2}x$,實(shí)數(shù)a,b,c滿足f(a)•f(b)•f(c)<0,且0<a<b<c,若實(shí)數(shù)x0是函數(shù)f(x)的一個(gè)零點(diǎn),那么下列不等式中,不可能成立的是( 。
A.x0<aB.x0>bC.x0<cD.x0>c

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知{an}滿足a1=1,an+an+1=($\frac{1}{3}$)n(n∈N*),Sn=a1+a2•3+a3•32+…+an•3n-1,類比課本中推導(dǎo)等比數(shù)列前n項(xiàng)和公式的方法,可求得4Sn-an•3n=n.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=lgx的定義域?yàn)榧螦,函數(shù)$g(x)=\sqrt{4-x}$的定義域?yàn)榧螧,集合C=(-∞,a].
(Ⅰ)求A∩B;
(Ⅱ)若A∩C=∅,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.如圖,在四棱錐P-ABCD中,平面PAD⊥平面ABCD,AB∥DC,△PAD是等邊三角形,已知BD=2AD=8,AB=2DC=4$\sqrt{5}$.
(1)設(shè)M是PC上任意一點(diǎn),證明:平面MBD⊥平面PAD;
(2)求四棱錐P-ABCD的體積.
(3)在線段PC上是否存在一點(diǎn)M,使得PA∥平面BDM,若存在,求出$\frac{MC}{PC}$的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.(1)證明:當(dāng)$0<x<\frac{π}{2}$時(shí),sinx<x;
(2)求不等式sinx<x的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.函數(shù)$f(x)=\frac{1}{x}ln(-{x^2}-3x+4)$的定義域是( 。
A.(-∞,-4]∪[1,+∞)B.(-4,0)∪(0,1)C.(-4,1)D.(-∞,-4)∪(1,+∞)

查看答案和解析>>

同步練習(xí)冊答案