20.如圖,已知四棱錐P-ABCD中,PA⊥平面ABCD,底面ABCD是直角梯形,且∠DAB=90°,∠ABC=45°,CB=$\sqrt{2}$,AB=2,PA=1.
(1)求證:BC⊥平面PAC;
(2)若M是PC的中點,求二面角M-AD-C的大。

分析 (1)由PA⊥平面ABCD,可得PA⊥BC.在△ABC中,由余弦定理可得:AC2=2,因此AC2+BC2=AB2,可得AC⊥BC,即可證明BC⊥平面PAC.
(2)由(1)可得:AD=CD=1,分別以AD,AB,AP為x,y,z軸,建立空間直角坐標(biāo)系.取平面ACD的法向量$\overrightarrow{n}$=$\overrightarrow{AP}$=(0,0,1).設(shè)平面ADM的法向量為$\overrightarrow{m}$=(x,y,z),由$\left\{\begin{array}{l}{\overrightarrow{m}•\overrightarrow{AM}=0}\\{\overrightarrow{m}•\overrightarrow{AD}=0}\end{array}\right.$,可得$\overrightarrow{m}$.利用cos$<\overrightarrow{m},\overrightarrow{n}>$=$\frac{\overrightarrow{m}•\overrightarrow{n}}{|\overrightarrow{m}||\overrightarrow{n}|}$,即可得出.

解答 (1)證明:∵PA⊥平面ABCD,∴PA⊥BC,
在△ABC中,由余弦定理可得:AC2=${2}^{2}+(\sqrt{2})^{2}$-2×$2×\sqrt{2}×cos4{5}^{°}$=2,
∴AC2+BC2=AB2=4,
∴∠ACB=90°,即AC⊥BC,
又PC∩AC=A,∴BC⊥平面PAC.
(2)解:由(1)可得:AD=CD=1,分別以AD,AB,AP為x,y,z軸,建立空間直角坐標(biāo)系.
則A(0,0,0),D(1,0,0),P(0,0,1),C(1,1,0),M($\frac{1}{2}$,$\frac{1}{2}$,$\frac{1}{2}$),取平面ACD的法向量$\overrightarrow{n}$=$\overrightarrow{AP}$=(0,0,1).
設(shè)平面ADM的法向量為$\overrightarrow{m}$=(x,y,z),$\overrightarrow{AM}$=($\frac{1}{2}$,$\frac{1}{2}$,$\frac{1}{2}$),$\overrightarrow{AD}$=(1,0,0).
由$\left\{\begin{array}{l}{\overrightarrow{m}•\overrightarrow{AM}=0}\\{\overrightarrow{m}•\overrightarrow{AD}=0}\end{array}\right.$,得$\left\{\begin{array}{l}{\frac{1}{2}x+\frac{1}{2}y+\frac{1}{2}z=0}\\{x=0}\end{array}\right.$,取$\overrightarrow{m}$=(0,1,-1).
cos$<\overrightarrow{m},\overrightarrow{n}>$=$\frac{\overrightarrow{m}•\overrightarrow{n}}{|\overrightarrow{m}||\overrightarrow{n}|}$=$\frac{-1}{\sqrt{2}}$,
設(shè)二面角M-AD-C的大小為θ,易知θ為銳角.∴cosθ=$\frac{\sqrt{2}}{2}$,θ=45°
∴二面角M-AD-C的大小為45°

點評 本題考查了空間位置關(guān)系空間角、法向量的應(yīng)用、向量垂直與數(shù)量積的關(guān)系、勾股定理,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知圓(x-1)2+y2=R2(R>0)與橢圓$\frac{{x}^{2}}{4}$+y2=1有公共點,求圓的半徑R的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.如圖,C,D是直徑為AB的半圓上的兩個不同的點,AC與BD交于點E,點F在弦BD上,且△ACD∽△BCF,證明:△ABC∽△DFC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.設(shè)橢圓E1的長半軸長為a1、短半軸長為b1,橢圓E2的長半軸長為a2、短半軸長為b2,若$\frac{{a}_{1}}{{a}_{2}}$=$\frac{_{1}}{_{2}}$,則我們稱橢圓E1與橢圓E2是相似橢圓.已知橢圓E:$\frac{x^2}{2}$+y2=1,其左頂點為A、右頂點為B.
(1)設(shè)橢圓E與橢圓F:$\frac{x^2}{s}$+$\frac{y^2}{2}$=1是“相似橢圓”,求常數(shù)s的值;
(2)設(shè)橢圓G:$\frac{x^2}{2}$+y2=λ(0<λ<1),過A作斜率為k1的直線l1與橢圓G只有一個公共點,過橢圓E的上頂點為D作斜率為k2的直線l2與橢圓G只有一個公共點,求|k1k2|的值;
(3)已知橢圓E與橢圓H:$\frac{x^2}{2}$+$\frac{y^2}{t}$=1(t>2)是相似橢圓.橢圓H上異于A、B的任意一點C(x0,y1),且橢圓E上的點M(x0,y2)(y1y2>0)求證:AM⊥BC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.如圖,已知CF是圓O的切線,C為切點,弦AB∥CF,E為圓周上一點,CE交AB的延長線于點D,弧$\widehat{AB}$=弧$\widehat{BC}$.求證:
(1)△ABC是等邊三角形;
(2)△BCE∽△BCD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.某學(xué)校在高一、高二兩個年級學(xué)生中各抽取100人的樣本,進(jìn)行普法知識調(diào)查,其結(jié)果如表:
高一高二總計
合格人數(shù)70x150
不合格人數(shù)y2050
總計100100200
(1)求x,y的值,用分層抽樣的方法從樣本的不合格同學(xué)中抽取15人的輔導(dǎo)小組,其中高一、高二各多少人?
(2)有沒有99%的把握認(rèn)為“高一、高二兩個年級這次普法知識調(diào)查結(jié)果有差異”?
k05.0246.6357.87910.828
P(k2≥k00.0250.0100.0050.001
參考公式:k2=$\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.如圖所示,四邊形ABCD中,AB=1,AD=7,BC=CD=5,∠BAD=∠BCD=90°.
(1)求AC的長;
(2)E為BC中點,F(xiàn)為AD中點,求EF的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.在△ABC中,c=2$\sqrt{2}$,a>b,C=$\frac{π}{4}$,tanAtanB=6,試求a,b及△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2017屆甘肅蘭州一中高三9月月考數(shù)學(xué)(文)試卷(解析版) 題型:選擇題

設(shè)集合A={x|x>a},集合B={-1,1,2},若A∩B=B,則實數(shù)a的取值范圍是( )

A.(1,+∞) B.(-∞,1) C.(-1,+∞) D.(-∞,-1)

查看答案和解析>>

同步練習(xí)冊答案