分析 (1)由PA⊥平面ABCD,可得PA⊥BC.在△ABC中,由余弦定理可得:AC2=2,因此AC2+BC2=AB2,可得AC⊥BC,即可證明BC⊥平面PAC.
(2)由(1)可得:AD=CD=1,分別以AD,AB,AP為x,y,z軸,建立空間直角坐標(biāo)系.取平面ACD的法向量$\overrightarrow{n}$=$\overrightarrow{AP}$=(0,0,1).設(shè)平面ADM的法向量為$\overrightarrow{m}$=(x,y,z),由$\left\{\begin{array}{l}{\overrightarrow{m}•\overrightarrow{AM}=0}\\{\overrightarrow{m}•\overrightarrow{AD}=0}\end{array}\right.$,可得$\overrightarrow{m}$.利用cos$<\overrightarrow{m},\overrightarrow{n}>$=$\frac{\overrightarrow{m}•\overrightarrow{n}}{|\overrightarrow{m}||\overrightarrow{n}|}$,即可得出.
解答 (1)證明:∵PA⊥平面ABCD,∴PA⊥BC,
在△ABC中,由余弦定理可得:AC2=${2}^{2}+(\sqrt{2})^{2}$-2×$2×\sqrt{2}×cos4{5}^{°}$=2,
∴AC2+BC2=AB2=4,
∴∠ACB=90°,即AC⊥BC,
又PC∩AC=A,∴BC⊥平面PAC.
(2)解:由(1)可得:AD=CD=1,分別以AD,AB,AP為x,y,z軸,建立空間直角坐標(biāo)系.
則A(0,0,0),D(1,0,0),P(0,0,1),C(1,1,0),M($\frac{1}{2}$,$\frac{1}{2}$,$\frac{1}{2}$),取平面ACD的法向量$\overrightarrow{n}$=$\overrightarrow{AP}$=(0,0,1).
設(shè)平面ADM的法向量為$\overrightarrow{m}$=(x,y,z),$\overrightarrow{AM}$=($\frac{1}{2}$,$\frac{1}{2}$,$\frac{1}{2}$),$\overrightarrow{AD}$=(1,0,0).
由$\left\{\begin{array}{l}{\overrightarrow{m}•\overrightarrow{AM}=0}\\{\overrightarrow{m}•\overrightarrow{AD}=0}\end{array}\right.$,得$\left\{\begin{array}{l}{\frac{1}{2}x+\frac{1}{2}y+\frac{1}{2}z=0}\\{x=0}\end{array}\right.$,取$\overrightarrow{m}$=(0,1,-1).
cos$<\overrightarrow{m},\overrightarrow{n}>$=$\frac{\overrightarrow{m}•\overrightarrow{n}}{|\overrightarrow{m}||\overrightarrow{n}|}$=$\frac{-1}{\sqrt{2}}$,
設(shè)二面角M-AD-C的大小為θ,易知θ為銳角.∴cosθ=$\frac{\sqrt{2}}{2}$,θ=45°.
∴二面角M-AD-C的大小為45°.
點評 本題考查了空間位置關(guān)系空間角、法向量的應(yīng)用、向量垂直與數(shù)量積的關(guān)系、勾股定理,考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
高一 | 高二 | 總計 | |
合格人數(shù) | 70 | x | 150 |
不合格人數(shù) | y | 20 | 50 |
總計 | 100 | 100 | 200 |
k0 | 5.024 | 6.635 | 7.879 | 10.828 |
P(k2≥k0) | 0.025 | 0.010 | 0.005 | 0.001 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2017屆甘肅蘭州一中高三9月月考數(shù)學(xué)(文)試卷(解析版) 題型:選擇題
設(shè)集合A={x|x>a},集合B={-1,1,2},若A∩B=B,則實數(shù)a的取值范圍是( )
A.(1,+∞) B.(-∞,1) C.(-1,+∞) D.(-∞,-1)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com