16.設a=40.9,b=80.45,c=($\frac{1}{2}$)-1.5,則( 。
A.c>a>bB.b>a>cC.a>b>cD.a>c>b

分析 根據(jù)函數(shù)y=2x的單調(diào)性、指數(shù)的運算性質(zhì)判斷出a、b、c的大小關(guān)系.

解答 解:∵函數(shù)y=2x在R上單調(diào)遞增,
且a=40.9=21.8,b=80.45=21.35,c=($\frac{1}{2}$)-1.5=21.5,
∴a>c>b,
故選:D.

點評 本題考查了指數(shù)函數(shù)的單調(diào)性,以及指數(shù)的運算性質(zhì)的應用,屬于基礎題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

20.已知函數(shù)f(x)在其定義域R上單調(diào)遞增,則滿足f(2x-2)<f(2)的x的取值范圍是( 。
A.(-∞,0)B.(2,+∞)C.(-∞,0)∪(2,+∞)D.(-∞,2)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.復數(shù)z=(2+3i)i的實部是(  )
A.2B.-2C.3D.-3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.將函數(shù)f(x)=$\sqrt{3}$cos2x+sin2x的圖象向右平移$\frac{π}{6}$個單位長度,再向上平移1個單位長度,得到函數(shù)g(x)的圖象,且滿足|g(x)|≤a恒成立,則a的最小值為( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.若函數(shù)f(x)在定義域D內(nèi)某區(qū)間I上是增函數(shù),而y=$\frac{f(x)}{x}$在I上是減函數(shù),則稱y=f(x)在I上是“弱增函數(shù)”.
(1)請分別判斷f(x)=x+4,g(x)=x2+4x+2在x∈(1,2)是否是“弱增函數(shù)”,并簡要說明理由;
(2)若函數(shù)h(x)=x2+(m-$\frac{1}{2}$)x+b(m,b是常數(shù))在(0,1]上是“弱增函數(shù)”,請求出m及b應滿足的條件.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.命題“原函數(shù)與反函數(shù)的圖象關(guān)于y=x對稱”的否定是(  )
A.原函數(shù)與反函數(shù)的圖象關(guān)于y=-x對稱
B.原函數(shù)不與反函數(shù)的圖象關(guān)于y=x對稱
C.存在一個原函數(shù)與反函數(shù)的圖象不關(guān)于y=x對稱
D.存在原函數(shù)與反函數(shù)的圖象關(guān)于y=x對稱

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.設直線系A:(x-1)cos θ+(y-1)sin θ=1(0≤θ<2π),對于下列五個命題:
①存在定點P不在A中的任一直線上;
②A中所有直線均經(jīng)過一個定點;
③對于任意的正整數(shù)n(n≥3),存在正n邊形,其所有邊均在A中的直線上;
④A中的直線所能圍成的正三角形的面積都相等;
⑤A中的直線所能圍成的正方形的面積都相等.
其中所有真命題的序號是( 。
A.①②④B.②③⑤C.①③⑤D.②④⑤

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.已知向量$\overrightarrow a,\overrightarrow b$的夾角為$\frac{5π}{6}$,且$|{\overrightarrow a}|=2$,$|{\overrightarrow b}|=\sqrt{3}$,$\overrightarrow c=2\overrightarrow a+3\overrightarrow b$,則$|{\overrightarrow c}|$=$\sqrt{7}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.如圖,已知⊙O1與⊙O2相交于點M,N,NA為⊙O2的直徑,連接AM交⊙O1于點B,點C為$\widehat{AM}$的中點,連接CN分別與直線AB,⊙O1交于點D,E.求證:
(1)AC∥BE
(2)CD•BE2=CN•DE2

查看答案和解析>>

同步練習冊答案