精英家教網 > 高中數學 > 題目詳情

【題目】運行如圖所示的流程圖,則輸出的結果S是( 。

A.
B.
C.﹣1
D.1

【答案】A
【解析】解:s=0,n=1<2017,

s=cos = ,n=2<2017,

s= +cos =0,n=3<2017,

s=cos =﹣1,n=4<2017,

s=﹣1+cos =﹣ ,n=5<2017,

s=﹣ +cos =﹣1,n=6<2017,

s=﹣1+cos =0,n=7<2017,

周期是6,2017÷6=336×6+1,

故輸出s= ,

所以答案是:A.

【考點精析】本題主要考查了程序框圖的相關知識點,需要掌握程序框圖又稱流程圖,是一種用規(guī)定的圖形、指向線及文字說明來準確、直觀地表示算法的圖形;一個程序框圖包括以下幾部分:表示相應操作的程序框;帶箭頭的流程線;程序框外必要文字說明才能正確解答此題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知Ω={(x,y)||x|≤1,|y|≤1},A是曲線y=x3 圍成的區(qū)域,若向區(qū)域Ω上隨機投一點P,則點P落入區(qū)域A的概率為

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖所示,在四棱錐P﹣ABCD中,底面ABCD為矩形,PA⊥平面ABCD,點E在線段PC上,PC⊥平面BDE,設PA=1,AD=2.

(1)求平面BPC的法向量;
(2)求二面角B﹣PC﹣A的正切值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】甲、乙、丙三人進行羽毛球練習賽,其中兩人比賽,另一人當裁判.每局比賽結束時,負的一方在下局當裁判,假設每局比賽中,甲勝乙的概率為 ,甲勝丙、乙勝丙的概率都是 ,各局比賽的結果相互獨立,第一局甲當裁判.
(1)求第3局甲當裁判的概率;
(2)記前4局中乙當裁判的次數為X,求X的分布列和數學期望.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知數列{an}滿足a0∈R,an+1=2n﹣3an , (n=0,1,2,…)
(1)設bn= ,試用a0 , n表示bn(即求數列{bn}的通項公式);
(2)求使得數列{an}遞增的所有a0的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,四棱錐P﹣ABCD中,平面PAC⊥底面ABCD,BC=CD= AC=2,∠ACB=∠ACD=

(1)證明:AP⊥BD;
(2)若AP= ,AP與BC所成角的余弦值為 ,求二面角A﹣BP﹣C的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知△ABC的內角A,B,C滿足sin2A+sin(A﹣B+C)=sin(C﹣A﹣B)+ ,面積S滿足1≤S≤2,記a,b,c分別為A,B,C所對的邊,在下列不等式一定成立的是( 。
A.bc(b+c)>8
B.ab(a+b)>16
C.6≤abc≤12
D.12≤abc≤24

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】等差數列{an}中的a2、a4032是函數 的兩個極值點,則log2(a2a2017a4032)=(  )
A.
B.4
C.
D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知PC⊥平面ABC,AC=2 ,PC=BC,AB=4,∠BAC=30°. 點D是線段AB上靠近B的四等分點,PE∥CB,PC∥EB.

(Ⅰ)證明:直線AB⊥平面PCD;
(Ⅱ)若F為線段AC上靠近C的四等分點,求平面PDF與平面CBD所成銳二面角的正切值.

查看答案和解析>>

同步練習冊答案