已知直線y=
2
2
x
與橢圓在第一象限交于M點(diǎn),又MF2⊥x軸,F(xiàn)2是橢圓右焦點(diǎn),另一個(gè)焦點(diǎn)為F1,若
MF1
MF2
=2
,求橢圓的標(biāo)準(zhǔn)方程.
考點(diǎn):橢圓的標(biāo)準(zhǔn)方程
專題:圓錐曲線的定義、性質(zhì)與方程
分析:根據(jù)題意知道,焦點(diǎn)在x軸上,設(shè)出標(biāo)準(zhǔn)方程,再得到M的坐標(biāo),根據(jù)數(shù)量積,求出c的值,再根據(jù)點(diǎn)M在橢圓上,和橢圓的性質(zhì),求出a2,b2的值,問(wèn)題得以解決
解答: 解:∵M(jìn)F2⊥x軸,F(xiàn)2是橢圓右焦點(diǎn),另一個(gè)焦點(diǎn)為F1,
∴焦點(diǎn)在x軸上,
可設(shè)橢圓方程為:
x2
a2
+
y2
b2
=1,(a>b>0),設(shè)焦點(diǎn)F2是的坐標(biāo)為(c,0),F(xiàn)1是的坐標(biāo)為(-c,0),
∵直線y=
2
2
x
與橢圓在第一象限交于M點(diǎn),
∴點(diǎn)M的坐標(biāo)為(c,
2
2
c),
MF1
=(-2c,-
2
2
c),
MF2
=(0,
2
2
c),
MF1
MF2
=2
,
1
2
c2=2,
∴c=2,
∴點(diǎn)M的坐標(biāo)為(2,
2
),
∵點(diǎn)M在橢圓上,
4
a2
+
2
b2
=1
,
∵a2=b2+c2
∴a2=8,b2=4,
故橢圓的標(biāo)準(zhǔn)方程為
x2
a2
+
y2
b2
=1
點(diǎn)評(píng):本題考查了橢圓的定義和性質(zhì),以及向量的數(shù)量積的運(yùn)算,屬于基礎(chǔ)題
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

△ABC中,已知:sinA:sinB:sinC=1:1:
2
,且S△ABC=
1
2
,則
AB
BC
+
BC
CA
+
AB
CA
的值是(  )
A、2
B、
2
C、-2
D、-
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,在正方體ABCD-A1B1C1D1的側(cè)面AB1內(nèi)有一動(dòng)點(diǎn)P到平面A1C1的距離是直線BC的距離的2倍,點(diǎn)M是棱BB1的中點(diǎn),則動(dòng)點(diǎn)P所在曲線的大致形狀為(  )
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定義在R上的函數(shù)f(x)滿足f(x+6)=f(x).當(dāng)-3≤x<-1時(shí),f(x)=-(x+2)2,當(dāng)-1≤x<3時(shí),f(x)=x.則f(1)+f(2)+…+f(2014)=( 。
A、335B、336
C、337D、2014

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,線段AB夾在一個(gè)直二面角的兩個(gè)半平面內(nèi),它與兩個(gè)半平面所成角都是30°,則AB與這個(gè)二面角的棱l所成角為(  )
A、30°B、45°
C、60°D、90°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如果一個(gè)三位正整數(shù)的中間一個(gè)數(shù)字比另兩個(gè)數(shù)字小,如305,414,879等,則稱這個(gè)三位數(shù)為凹數(shù),那么所有凹數(shù)的個(gè)數(shù)是( 。
A、240B、285
C、729D、920

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知在△ABC中,AB=AC,∠CAB=
π
6
,M為△ABC的外心,且
CM
CA
CB
,則λ+2μ=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)點(diǎn)A是拋物線y2=4x上一點(diǎn),點(diǎn)B(1.0),點(diǎn)M是線段AB的中點(diǎn),若|AB|=3,則M 到直線x=-1的距離為(  )
A、5
B、
3
2
C、2
D、
5
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

過(guò)拋物線y2=2px(p>0)的焦點(diǎn)F作直線與拋物線交于A、B兩點(diǎn),以AB為直徑作圓,判斷所作圓與拋物線的關(guān)系,并加以證明.

查看答案和解析>>

同步練習(xí)冊(cè)答案