設(shè)過原點(diǎn)的直線與圓的一個交點(diǎn)為,點(diǎn)為線段的中點(diǎn)。
(1)求圓的極坐標(biāo)方程;
(2)求點(diǎn)軌跡的極坐標(biāo)方程,并說明它是什么曲線.

(1) ;(2) 方程為,它表示圓心在點(diǎn),半徑為的圓.

解析試題分析:(1)根據(jù)極坐標(biāo)和直角坐標(biāo)的互化公式可將極坐標(biāo)方程化為直角坐標(biāo)方程。(2)因?yàn)辄c(diǎn)在圓上則可設(shè)的極坐標(biāo)為的極坐標(biāo)為,點(diǎn)的極坐標(biāo)為,并代入可得點(diǎn)的極坐標(biāo)方程。
試題解析:解:圓的極坐標(biāo)方程為4分
設(shè)點(diǎn)的極坐標(biāo)為,點(diǎn)的極坐標(biāo)為,
∵點(diǎn)為線段的中點(diǎn), ∴,  7分
,代入圓的極坐標(biāo)方程,得
∴點(diǎn)軌跡的極坐標(biāo)方程為,它表示圓心在點(diǎn),半徑為的圓.    10分
考點(diǎn):1直角坐標(biāo)方程和極坐標(biāo)方程間的互化;2軌跡問題。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

在直角坐標(biāo)系xoy中,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸為極軸建立極坐標(biāo)系,半圓C的極坐標(biāo)方程為,
.
(1)求C的參數(shù)方程;
(2)設(shè)點(diǎn)D在C上,C在D處的切線與直線垂直,根據(jù)(1)中你得到的參數(shù)方程,確定D的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

求以點(diǎn)A(2,0)為圓心,且過點(diǎn)B的圓的極坐標(biāo)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在直角坐標(biāo)系xOy中,直線l的參數(shù)方程為(t為參數(shù),0≤α<π)。以原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系。已知曲線C的極坐標(biāo)方程為
ρcos2θ=4sinθ。
(1)求直線l與曲線C的平面直角坐標(biāo)方程;
(2)設(shè)直線l與曲線C交于不同的兩點(diǎn)A、B,若,求α的值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

以直角坐標(biāo)系的原點(diǎn)為極點(diǎn)O,軸正半軸為極軸,已知點(diǎn)P的直角坐標(biāo)為(1,-5),點(diǎn)C的極坐標(biāo)為,若直線l經(jīng)過點(diǎn)P,且傾斜角為,圓C的半徑為4.
(1).求直線l的參數(shù)方程及圓C的極坐標(biāo)方程;
(2).試判斷直線l與圓C有位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在極坐標(biāo)系中, O為極點(diǎn), 半徑為2的圓C的圓心的極坐標(biāo)為
(1)求圓C的極坐標(biāo)方程;
(2)在以極點(diǎn)O為原點(diǎn),以極軸為x軸正半軸建立的直角坐標(biāo)系中,直線的參數(shù)方程為(t為參數(shù)),直線與圓C相交于A,B兩點(diǎn),已知定點(diǎn),求|MA|·|MB|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知直線為參數(shù)), 曲線 (為參數(shù)).
(1)設(shè)相交于兩點(diǎn),求;
(2)若把曲線上各點(diǎn)的橫坐標(biāo)壓縮為原來的倍,縱坐標(biāo)壓縮為原來的倍,得到曲線,設(shè)點(diǎn)是曲線上的一個動點(diǎn),求它到直線的距離的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知曲線C的極坐標(biāo)方程為,直線的參數(shù)方程為(t為參數(shù),).
(1)把曲線C的極坐標(biāo)方程化為直角坐標(biāo)方程,并說明曲線C的形狀;
(2)若直線經(jīng)過點(diǎn),求直線被曲線C截得的線段AB的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),直線的參數(shù)方程為為參數(shù)),為直線與曲線的公共點(diǎn). 以原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系.
(Ⅰ)求點(diǎn)的極坐標(biāo);
(Ⅱ)將曲線上所有點(diǎn)的縱坐標(biāo)伸長為原來的倍(橫坐標(biāo)不變)后得到曲線,過點(diǎn)作直線,若直線被曲線截得的線段長為,求直線的極坐標(biāo)方程.

查看答案和解析>>

同步練習(xí)冊答案