某產(chǎn)品分甲、乙、丙三等,其中乙、丙兩等均屬次品.若生產(chǎn)中出現(xiàn)乙等品的概率為0.03,丙等品的概率為0.01,則任意抽查一件成品,抽得正品的概率為

[  ]
A.

0.99

B.

0.98

C.

0.97

D.

0.96

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

某倉庫有同樣規(guī)格的產(chǎn)品12箱,其中6箱、4箱、2箱依次是由甲、乙、丙三個廠生產(chǎn)的,且三個廠的次品率分別是
1
10
1
14
,
1
18
.現(xiàn)從這12箱中任取一箱,再從取得的一箱中任意取出一個產(chǎn)品.
(1)求取得的一件產(chǎn)品是次品的概率;(2)若已知取得一件產(chǎn)品是次品,問這個次品是乙廠生產(chǎn)的概率是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•成都一模)某工廠在政府的幫扶下,準(zhǔn)備轉(zhuǎn)型生產(chǎn)一種特殊機(jī)器,生產(chǎn)需要投入固定成本500萬 元,年生產(chǎn)與銷售均以百臺計數(shù),且每生產(chǎn)100臺,還需增加可變成本1000萬元.若市場對 該產(chǎn)品的年需求量為500臺,每生產(chǎn)m百臺的實(shí)際銷售收人近似滿足函數(shù)R(m)=5000m-500m2(0≤m≤5,m∈N)
(I)試寫出第一年的銷售利潤y(萬元)關(guān)于年產(chǎn)量單位x百臺,x≤5,x∈N*)的函數(shù)關(guān)系式;
(II)若工廠第一年預(yù)計生產(chǎn)機(jī)器300臺,銷售后將分到甲、乙、丙三個地區(qū)各100臺,因技術(shù)、運(yùn)輸?shù)仍,估計每個地區(qū)的機(jī)器中出現(xiàn)故障的概率為
15
.出現(xiàn)故障后,需要廠家上門調(diào)試,每個地區(qū)調(diào)試完畢,廠家需要額外開支100萬元.記廠家上門調(diào)試需要額外開支的費(fèi) 用為隨機(jī)變量ξ,試求第一年廠家估計的利潤.
(說明:銷售利潤=實(shí)際銷售收入一成本;估計利潤=銷售利潤一ξ的數(shù)學(xué)期望)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知某一天工廠甲、乙、丙三個車間生產(chǎn)的產(chǎn)品件數(shù)分別是1500,1300,1200現(xiàn)用分層抽樣的方法抽取一個樣本容量為n的樣本進(jìn)行質(zhì)量檢查,已知丙車間抽取了24件產(chǎn)品,則n=
80
80

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:荊門市2008屆高三第一輪復(fù)習(xí)概率與統(tǒng)計單元測試題 題型:044

已知某天一工廠甲、乙、丙三個車間生產(chǎn)的產(chǎn)品件數(shù)分別是15001300、1200,現(xiàn)用分層抽樣方法抽取了一個樣本容量為n的樣本,進(jìn)行質(zhì)量檢查,已知丙車間抽取了24件產(chǎn)品,求n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012高三數(shù)學(xué)一輪復(fù)習(xí)單元練習(xí)題 概率與統(tǒng)計(1) 題型:044

已知某天一工廠甲、乙、丙三個車間生產(chǎn)的產(chǎn)品件數(shù)分別是1500、1300、1200,現(xiàn)用分層抽樣方法抽取了一個樣本容量為n的樣本,進(jìn)行質(zhì)量檢查,已知丙車間抽取了24件產(chǎn)品,求n的值.

查看答案和解析>>

同步練習(xí)冊答案