已知函數(shù)f(x)=
3
sin(2x-
π
6
)+2sin2(x-
π
12
)(x∈R),
(1)求函數(shù)f(x)圖象的對稱軸;
(2)利用五點法作出函數(shù)f(x)在x∈[
π
6
,
6
]
的大致圖象.
考點:三角函數(shù)中的恒等變換應用,由y=Asin(ωx+φ)的部分圖象確定其解析式
專題:作圖題,三角函數(shù)的圖像與性質(zhì)
分析:(1)利用三角恒等變換可求得f(x)=2sin(2x-
π
3
)+1,從而可求得函數(shù)f(x)圖象的對稱軸;
(2)將x的取值,2x-
π
3
的取值及f(x)的取值情況列表如下,利用五點法作出函數(shù)f(x)在x∈[
π
6
,
6
]
的大致圖象即可.
解答: 解:(1)f(x)=
3
sin(2x-
π
6
)+2sin2(x-
π
12
)=
3
sin(2x-
π
6
)+1-cos(2x-
π
6
)=2sin(2x-
π
3
)+1,
由2x-
π
3
=kπ+
π
2
得:x=
2
+
12
,k∈Z.
∴函數(shù)f(x)圖象的對稱軸方程為:x=
2
+
12
,k∈Z.
(2)將x的取值,2x-
π
3
的取值及f(x)的取值情況列表如下:
 x  
π
6
 
12
 
3
 
11π
12
 
6
 2x-
π
3
 0  
π
2
 π  
2
 2π
 2sin(2x-
π
3
)+1
 1  3  1 -1  1
作圖如下:
點評:本題考查三角恒等變換的應用,考查五點作圖,作圖是難點,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

設a∈R,若函數(shù)y=x+alnx在區(qū)間(
1
e
,e)有極值點,則a取值范圍為(  )
A、(
1
e
,e)
B、(-e,-
1
e
C、(-∞,
1
e
)∪(e,+∞)
D、(-∞,-e)∪(-
1
e
,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

執(zhí)行如圖所示的程序框圖,則輸出的k=(  )
A、4B、5C、6D、7

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若(x+
1
x
n展開式的二項式系數(shù)之和為64,則n為( 。
A、4B、5C、6D、7

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設△ABC的內(nèi)角A、B、C所對邊的長分別為a、b、c,且a2-c2=3b,sinAcosC=4cosAsinC,則b=( 。
A、2
B、
5
C、2
5
D、5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=Asin(ωx-
π
6
)+1,(A>0,ω>0)的最大值為3,其圖象的兩條相鄰的對稱軸之間的距離為
π
2

(1)求f(x)的解析式
(2)設|α|<
π
2
,f(
α
2
)=-1,求α的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在正四面體ABCD中,M,N分別是BC,AD中點.
(1)用反證法證明:直線AM與直線CN為異面直線;
(2)求異面直線AM與CN所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

我市某高中的一個綜合實踐研究小組欲研究晝夜溫差大小與患感冒人數(shù)多少之間的關系,他們分別到氣象局與某醫(yī)院抄錄了1至6月份每月10號的晝夜溫差情況與因患感冒而就診的人數(shù),得到如下資料:
日    期 1月10日 2月10日 3月10日 4月10日 5月10日 6月10日
晝夜溫差x(°C) 10 11 13 12 8 6
就診人數(shù)y(個) 22 25 29 26 16 12
該綜合實踐研究小組確定的研究方案是:先從這六組數(shù)據(jù)中選取2組,用剩下的4組數(shù)據(jù)求線性回歸方程,再用被選取的2組數(shù)據(jù)進行檢驗.
(1)若選取的是1月與6月的兩組數(shù)據(jù),請根據(jù)2至5月份的數(shù)據(jù),求出y關于x的線性回歸方程
y
=bx+a.
(2)若由線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗數(shù)據(jù)的誤差均不超過2人,則認為得到的線性回歸方程是理想的,試問該小組所得線性回歸方程是否理想?
參考數(shù)據(jù):
4
i=1
xi2=112+132+122+82=498;
4
i=1
xiyi11×25+13×29+12×26+8×16=1092.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知平面α、β滿足α⊥β,α∩β=L,直線AB在平面α內(nèi),AB⊥L,直線BC、DE在平面β內(nèi),且BC⊥DE,求證:AC⊥DE.

查看答案和解析>>

同步練習冊答案