如圖,在三棱柱ABC—中,底面為正三角形,平面ABC,=2AB,N是的中點(diǎn),M是線段上的動(dòng)點(diǎn)。
(1)當(dāng)M在什么位置時(shí),,請(qǐng)給出證明;
(2)若直線MN與平面ABN所成角的大小為,求的最大值。
(1)的中點(diǎn);(2)
【解析】
試題分析:(1)根據(jù)題意,由于在三棱柱ABC—中,底面為正三角形,平面ABC,=2AB,N是的中點(diǎn),M是線段上的動(dòng)點(diǎn),根據(jù)題意猜想當(dāng)點(diǎn)M在的中點(diǎn)時(shí)成立,證明:因?yàn)榈酌鏁r(shí)正三角形側(cè)面是矩形,高為2,底面邊長設(shè)為1,那么可知根據(jù)線面垂直的性質(zhì)定理能得到
(2)根據(jù)線面角的定義,那么由于直線MN與平面ABN所成角的大小為,那么借助于平面ABN的垂線段來得到線面角,借助于長度的比列關(guān)系可知,的最大值,也可以通過建立空間直角坐標(biāo)系來求解線面角,借助于向量法來得到三角函數(shù)關(guān)系式,進(jìn)而求解最值。
考點(diǎn):直線與平面之間的平行和垂直關(guān)系
點(diǎn)評(píng):本題考查空間中直線與平面之間的平行和垂直關(guān)系,用空間向量求解夾角,本題解題的關(guān)鍵是建立坐標(biāo)系,把理論的推導(dǎo)轉(zhuǎn)化成數(shù)字的運(yùn)算,降低了題目的難度
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
A、3:2 | B、7:5 | C、8:5 | D、9:5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
2 |
AN |
AB |
CM |
CC1 |
5 |
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com